National Register of Historic Places Registration Form

This form is for use in nominating or requesting determinations for individual properties and districts. See instructions in National Register Bulletin, How to Complete the National Register of Historic Places Registration Form. If any item does not apply to the property being documented, enter "N/A" for "not applicable." For functions, architectural classification, materials, and areas of significance, enter only categories and subcategories from the instructions. Place additional certification comments, entries, and narrative items on continuation sheets if needed (NPS Form 10-900a).

1. Name of Property
- **Historic name**: Du-Good Chemical Laboratory Building
- **Other names/site number**: St. Louis Veterinary Infirmary Building
- **Name of related Multiple Property Listing**: n/a

2. Location
- **Street & number**: 1215-23 S. Jefferson Ave.
- **City or town**: St. Louis
- **State**: Missouri
- **Code**: MO
- **County**: St. Louis (Independent City)
- **Code**: 510
- **Zip code**: 63104

3. State/Federal Agency Certification
As the designated authority under the National Historic Preservation Act, as amended,

I hereby certify that this _x_ nomination _n_ request for determination of eligibility meets the documentation standards for registering properties in the National Register of Historic Places and meets the procedural and professional requirements set forth in 36 CFR Part 60.

In my opinion, the property _x_ meets _n_ does not meet the National Register Criteria. I recommend that this property be considered significant at the following level(s) of significance:

- _x_ national
- _n_ statewide
- _n_ local

Applicable National Register Criteria:
- _A_ not applicable
- _B_ cultural or historic
- _C_ architectural
- _D_ historical
date: MAR 03 2017

Signature of certifying official/Title: Toni M. Prawl, Ph.D., Deputy SHPO

Missouri Department of Natural Resources
State or Federal agency/bureau or Tribal Government

In my opinion, the property _x_ meets _n_ does not meet the National Register criteria.

Signature of commenting official: Date

Title: State or Federal agency/bureau or Tribal Government

4. National Park Service Certification
I hereby certify that this property is:

- _x_ entered in the National Register
- _n_ determined eligible for the National Register
- _n_ determined not eligible for the National Register
- _n_ removed from the National Register
- _n_ other (explain:)

Signature of the Keeper: Date of Action
5. Classification

<table>
<thead>
<tr>
<th>Ownership of Property</th>
<th>Category of Property</th>
<th>Number of Resources within Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>X private</td>
<td>X building(s)</td>
<td>1 buildings</td>
</tr>
<tr>
<td>public - Local</td>
<td></td>
<td></td>
</tr>
<tr>
<td>public - State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>public - Federal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>district</td>
<td>1 district</td>
</tr>
<tr>
<td></td>
<td>site</td>
<td></td>
</tr>
<tr>
<td></td>
<td>structure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>object</td>
<td>1 object</td>
</tr>
</tbody>
</table>

6. Function or Use

<table>
<thead>
<tr>
<th>Historic Functions</th>
<th>Current Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMERCE/TRADE/professional</td>
<td>WORK IN PROGRESS</td>
</tr>
<tr>
<td>INDUSTRY/PROCESSING/EXTRACTION/manufacturing</td>
<td></td>
</tr>
<tr>
<td>EDUCATION/research facility</td>
<td></td>
</tr>
<tr>
<td>AGRICULTURE/SUBSISTENCE/animal facility</td>
<td></td>
</tr>
<tr>
<td>OTHER/chemical laboratory</td>
<td></td>
</tr>
</tbody>
</table>

7. Description

<table>
<thead>
<tr>
<th>Architectural Classification</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATE VICTORIAN</td>
<td>foundation: STONE/limestone</td>
</tr>
<tr>
<td></td>
<td>walls: BRICK</td>
</tr>
<tr>
<td></td>
<td>roof: OTHER</td>
</tr>
<tr>
<td></td>
<td>other:</td>
</tr>
</tbody>
</table>

X NARRATIVE DESCRIPTION ON CONTINUATION PAGES
Du-Good Chemical Laboratory Building
St. Louis (Independent City), MO

8. Statement of Significance

Applicable National Register Criteria

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Property is associated with events that have made a significant contribution to the broad patterns of our history.</td>
</tr>
<tr>
<td>B</td>
<td>Property is associated with the lives of persons significant in our past.</td>
</tr>
<tr>
<td>C</td>
<td>Property embodies the distinctive characteristics of a type, period, or method of construction or represents the work of a master, or possesses high artistic values, or represents a significant and distinguishable entity whose components lack individual distinction.</td>
</tr>
<tr>
<td>D</td>
<td>Property has yielded, or is likely to yield, information important in prehistory or history.</td>
</tr>
</tbody>
</table>

Criteria Considerations

Property is:

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Owned by a religious institution or used for religious purposes.</td>
</tr>
<tr>
<td>B</td>
<td>Removed from its original location.</td>
</tr>
<tr>
<td>C</td>
<td>A birthplace or grave.</td>
</tr>
<tr>
<td>D</td>
<td>A cemetery.</td>
</tr>
<tr>
<td>E</td>
<td>A reconstructed building, object, or structure.</td>
</tr>
<tr>
<td>F</td>
<td>A commemorative property.</td>
</tr>
<tr>
<td>G</td>
<td>Less than 50 years old or achieving significance within the past 50 years.</td>
</tr>
</tbody>
</table>

Areas of Significance

<table>
<thead>
<tr>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETHNIC HERITAGE/Black</td>
</tr>
<tr>
<td>INVENTION</td>
</tr>
</tbody>
</table>

Period of Significance

1947-1966

Significant Dates

1947

Significant Person

Diuguid, Lincoln Isaiah

Cultural Affiliation

n/a

Architect/Builder

Unknown

X STATEMENT OF SIGNIFICANCE ON CONTINUATION PAGES

9. Major Bibliographical References

Bibliography (Cite the books, articles, and other sources used in preparing this form.)

Previous documentation on file (NPS):

- preliminary determination of individual listing (36 CFR 67 has been requested)
- previously listed in the National Register
- previously determined eligible by the National Register
- designated a National Historic Landmark
- recorded by Historic American Buildings Survey #
- recorded by Historic American Engineering Record #
- recorded by Historic American Landscape Survey #

Historic Resources Survey Number (if assigned): __________________________

Primary location of additional data:

- State Historic Preservation Office
- Other State agency
- Federal agency
- Local government
- University
- Other

Name of repository: __________________________
Du-Good Chemical Laboratory Building
St. Louis (Independent City), MO

10. Geographical Data

Acreage of Property Less than 1 acre_____

Latitude/Longitude Coordinates
Datum if other than WGS84:__________
(enter coordinates to 6 decimal places)

1 38.62014 -90.21975 3
 Latitude: Longitude:

2 __________ __________ 4
 Latitude: Longitude:

UTM References
(Place additional UTM references on a continuation sheet.)

_____ NAD 1927 or ______ NAD 1983

1
 Zone Easting Northing

2
 Zone Easting Northing

3
 Zone Easting Northing

4
 Zone Easting Northing

Verbal Boundary Description (On continuation sheet)

Boundary Justification (On continuation sheet)

11. Form Prepared By

name/title Karen Bode Baxter and Timothy P. Maloney
organization Karen Bode Baxter, Preservation Specialist date 3/2/2017
street & number 5811 Delor St. telephone 314-353-0593
city or town St. Louis state MO zip code 63109
e-mail karen@bodebaxter.com

Additional Documentation
Submit the following items with the completed form:

- Maps:
 - A USGS map (7.5 or 15 minute series) indicating the property's location.
 - A Sketch map for historic districts and properties having large acreage or numerous resources. Key all photographs to this map.
- Continuation Sheets
- Photographs
- Owner Name and Contact Information
- Additional items: (Check with the SHPO or FPO for any additional items.)

Paperwork Reduction Act Statement: This information is being collected for applications to the National Register of Historic Places to nominate properties for listing or determine eligibility for listing, to list properties, and to amend existing listings. Response to this request is required to obtain a benefit in accordance with the National Historic Preservation Act, as amended (16 U.S.C.460 et seq.).

Estimated Burden Statement: Public reporting burden for this form is estimated to average 18 hours per response including time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding this burden estimate or any aspect of this form to the Office of Planning and Performance Management. U.S. Dept. of the Interior, 1849 C. Street, NW, Washington, DC.
Photographs
Submit clear and descriptive photographs. The size of each image must be 1600x1200 pixels (minimum), 3000x2000 preferred, at 300 ppi (pixels per inch) or larger. Key all photographs to the sketch map. Each photograph must be numbered and that number must correspond to the photograph number on the photo log. For simplicity, the name of the photographer, photo date, etc. may be listed once on the photograph log and doesn’t need to be labeled on every photograph.

Photo Log:

Name of Property: Du-Good Chemical Laboratory Building
City or Vicinity: St. Louis
County: St. Louis (Independent City) State: MO
Photographer: Sheila Findall
Date Photographed: February 1, 2016

Description of Photograph(s) and number, include description of view indicating direction of camera:

#1 of 14: Exterior, looking southwest at east façade and north elevation
#2 of 14: Exterior, looking northwest at east façade and south elevation
#3 of 14: Exterior, looking west at east façade north door
#4 of 14: Exterior, looking west at east façade south door
#5 of 14: Exterior, looking southeast at north and west elevations
#6 of 14: Exterior, looking northwest at south elevation
#7 of 14: Exterior, looking southwest at south end of east elevation
#8 of 14: Interior, first floor, southeast room, looking northeast from southwest corner
#9 of 14: Interior, first floor, mid north room, looking east from mid west wall
#10 of 14: Interior, first floor, northwest room, looking southeast from northwest corner
#11 of 14: Interior, first floor, mid west room, looking northeast from southwest corner
#12 of 14: Interior, first floor, mid west room, looking northwest at historic doors found in building
#13 of 14: Interior, first floor, southwest room, looking northeast from southwest corner
#14 of 14: Interior, second floor, east room, looking northeast from southwest corner

Figure Log:
Include figures on continuation pages at the end of the nomination.

Figure 1: Dr. Diuguid, photo from private collection of MLK Construction (St. Louis)
Figure 2: Dr. Diuguid in front of 1215 S. Jefferson, photo from private collection of MLK Construction (St. Louis)
Figure 3: 1215 S. Jefferson ca. 1896, photo from private collection of MLK Construction (St. Louis)
Figure 4: Dr. Diuguid, photo from private collection of MLK Construction (St. Louis)
Figure 5: Dr. Diuguid in his lab, photo from private collection of MLK Construction (St. Louis)
Figure 6: Dr. Diuguid in his lab, photo from private collection of MLK Construction (St. Louis)
Figure 7: Phi Kappa Phi Certificate, from private collection of MLK Construction (St. Louis)
Figure 8: Lynchburg’s Ambassador of Goodwill Recognition Certificate, from private collection of MLK Construction (St. Louis)
Figure 9: Hand Soap Ad, from private collection of MLK Construction (St. Louis)
Figure 10: 1908 Sanborn
Figure 11: 1932 Sanborn
Figure 12: 1951 Sanborn
Figure 13: Bing Contextual Map
Figure 14: Google Site Map
Figure 15: First Floor Photo Log
Figure 16: Second Floor Photo Log
Summary

The Du-Good Chemical Laboratory, located at 1215-23 South Jefferson Avenue, St. Louis, Missouri is a red brick, flat roofed, two-story, J-shaped, building (Photos 1 and 2). It was originally constructed in 1896 as a veterinary hospital and stables but became Dr. Lincoln I. Diuguid’s offices and laboratory (the Du-Good Chemical Laboratory) in 1947 without any evident alterations; even today the materials and layout of the building are all original except where otherwise stated. The main portion of the building parallels the alley (Figure 14 and 15) along the north side (Photo 5) of the property, two stories in the front and rear with a one-story section in the center of the building (Photo 6). The one-story, flat roofed, red brick stables (Photo 7) connect to the rear of the two-story section, extending along the west (rear) edge of the property and then back toward the street along the south side of the property, creating a courtyard facing Jefferson Avenue although it is enclosed with a wooden privacy fence (Photo 2). Facing east into the courtyard, the one-story stables section (Photos 7 and 11) has a half light (with 3 vertical lights), and a cross-braced paneled door with a 3-light transom) at the north end with four sliding barn doors spanning across the east elevation of the stables, each with sixteen light windows. The southern section of the stables (Photos 7 and 13) does not have doors, just a shed roof, a brick back wall (south side) and a beadboard end wall (east side). Attached to the east side of this section of the stable, a separate, non-historic shed (Photo 7) was attached, pieced together from scrap lumber with a wooden rear and east wall and flat roof, but it was resting on a more recently poured concrete slab and since the photo was taken, as part of the current rehab, it has been removed.

Setting

The façade (east elevation) extends to the public sidewalk along Jefferson Avenue (see Figures 13 and 14), a major arterial street along the western edge of the residential neighborhood, the Lafayette Square Historic District (NR listed 6/28/72). The Du-Good Chemical Laboratory is located on the west side of the street with an alley to the north, a small utility company shed to the south of the property and a residential flat to the west. Across the street is a two story commercial building and the side elevation of a residential building and the neighborhood is predominantly one to two story single family, flats and a few multi-family apartments, most of them constructed in the late-nineteenth or early twentieth centuries, while there is a mixture of similar residential buildings and both late-nineteenth century brick, two-story brick commercial buildings as well as modern commercial construction on Jefferson Avenue itself.

Front Elevation

The Du-Good Chemical Laboratory building has symmetrical brick façade (Photo 1) that has been painted and has a parapet with raised ends that have stone caps while the lowered center section is uncapped. The parapet is separated from the second floor by brick corbelling while the second floor retains the three, original, round arched, one-over-one wood windows with molded brick lintels and stone sills. The first floor had a massive round arched central entry with paired,
half-light, two-vertical panel, wooden doors that are actually rectangular, but have panels (and the half-light) that curve to conform to the round arched opening against the interior side of the wall. The doors are still stored in the building (Photo 12) and the hinges are still on the brick opening. The arched opening has been converted into an arched central display window that has been partially infilled with glass block and a concrete surround and kickplate, work that was done by Dr. Diuguid and his sons in the 1970s. The central window is flanked by round arched doorways with molded brick lintels and slightly recessed, three horizontal panel, round arched doors with a square light (Photos 3). There is a signboard with the “Du-Good Chem Lab & Mfrs.” centered above the central entry arch (Photo 1) and painted at the top of the north door (Photo 3) with “Microanalysis Research & Consulting Chemist etched in the glass of the south door (Photo 4).

Side and Rear Elevations

The north (alley) side elevation (Photos 1 and 5) has one over one wood windows with segmental brick arches vertically aligned in the front half two-story section (although the second-floor window is currently boarded over on the exterior) and in the rear portion of this section, there is a small single light wood awning window with a segmental brick arch that has also been boarded over. The north elevation of the one-story section has a mixture of small, one-light and four-light wood awning windows with segmental brick arches and metal security grates. These four awning windows are separated midway along the one-story section by a wagon door with a steel lintel that spans above paired, swinging, beadboard doors, each with a rectangular light divided into two lights. The rear two-story section has three bays of windows, a mixture of four-light sashes over wood shutters (first floor) and one-over-one (second floor) with brick sills and segmental arched brick lintels. In the center bay of this section on the second floor is a hayloft door opening (boarded in with a beadboard panel) with a wood sill and wood lintel.

On the second floor, the east side of the rear two-story section (Photos 1 and 6) is brick with no fenestration but it is currently covered with graffiti. The second floor of the west side of the front two-story section and the south side of the rear two-story section are slate covered walls and the south slate wall has a door opening (with no door currently) opening onto the rooftop of the stable section.

The south elevation (Photo 6) of the north wing of the building has one-over-one wood sashed windows irregularly placed in the front two-story section, one on each level although the second floor window is boarded over. In the stepped parapet, one-story middle section, there are two two-over-two wood sashed windows as well as small awning windows, four of them positioned to the west of the sashed windows and three forming a triangle positioned toward the front of the sashed windows. Most of the awning windows are single-light windows, but at least one is a four-light window and the triangular pattern windows are boarded over.
The rear (west) elevation (Photo 5) at the back of the two-story building has a single, wood sashed, one-over-one window with a metal security grate on the first floor. The remainder of the west and south elevations (the back walls of the stable section) are simple brick walls with clay tile parapet caps.

Interior (Figures 15 and 16)
The central front room (which originally was accessed through the large round arched opening and paired doors) has a concrete floor patterned to look like brick; it has beadboard walls and a beadboard ceiling. There are sliding, beadboard, barn doors (Photo 9) with small, four-light windows leading to the rear and transomed half-light (divided into 4 lights), two-panel doors to either side leading to the front office rooms (Photo 8), which have plaster walls and ceilings, although the plaster is damaged in the south room. The north office has built in cabinetry. Both offices have raised center trim and bullseye corner blocks and flat baseboards.

The second floor in the front two-story section (Photo 14) is reached by a quarter turn enclosed staircase, opening onto rooms with wood floors and plaster walls but the plaster is damaged and many areas have exposed brick. The ceiling is unfinished with exposed rafters and there are wood posts supporting the wood beams. The second floor has tall three member baseboards and the windows have raised center trim with bullseye corner blocks.

On the first floor, behind the front offices and behind the sliding barn doors is a small room on the either side of the central wagon aisle (Photo 9) that extends from the front round arched entry to the back of the building. The small room on the south is the original restroom (although it is no longer functional with missing fixtures) and the room on the north is a storage closet. The interior doors in the one-story section are four vertical panel doors. Behind these rooms is the stairway to the second floor and the central one-story section of the building (Photo 9), with its concrete floors, exposed brick walls and with wood posts and beams supporting an unfinished ceiling. There is a lowered area that was an animal bath and some of the horse stalls remain on either side of the central aisle. There are no baseboards and the awning windows are untrimmed, with only wood sills but the sashed windows have raised center trim with bullseye corner blocks.

The rear two-story section room on the first floor (Photo 10) has exposed brick walls, an unfinished ceiling and brick floors. There are no baseboards and the windows are untrimmed. There is a quarter turn staircase that is partially enclosed with beadboard leading to the second floor which has wood floors and plaster walls that are badly damaged, exposing the brick. There are no baseboards and the windows are untrimmed.

The one-story stables section (Photos 11 and 13) runs along the west side of the property and is connected to the main section by a simple wood board partition wall and doorway (Photos 10 and 12) and has a brick wall that is continuous with the adjacent north section of the building. On the
The interior, the stables section has concrete floors, exposed brick walls, with beadboard demising walls, and an unfinished, exposed rafter ceiling.

Alterations and Integrity Issues

The Du-Good Chemical Laboratory retains a very high degree of historic integrity, including its signage (Photos 1, 3, 4) since the building was simply locked up when Dr. Diuguid closed his business. The largest alteration was the infill of the wagon entry doors on the front elevation but the historic 17-light, two vertical panel paired doors and the hinges in the brick opening are still in the building and the current owner plans to reinstall the doors. Some windows have been boarded over and others have had security grates installed. There is also graffiti on some of the exterior walls. The stable roof is in extremely poor condition and has been covered with many layers of roofing materials, especially above the south section of the stables. The greatest threat to the building is the lack of maintenance in recent years, which has caused some of the brick parapet walls to crumble, window sashes to come apart, and the roof to leak and start to collapse over the stables. In the recent past, a small wood shed was attached to the east end of the stables along the south side of the property (Photo 7), resting on top of a larger, more modern concrete slab that runs along the south side of the property in front of the stables; from historic fire insurance maps, it appears that there may have been a variety of open sheds along this section of the property in the past but they are no longer standing. The current historic rehabilitation project that is just getting underway has already repaired the damaged parapets and removed the multiple layers of roofing materials, repaired the damaged roof joists and decking and removed the nonhistoric shed addition from the property, so that the building could be made weather tight before the winter storms.

The interior of the building retains its historic layout. The historic window and door trim as well as the baseboards remain in most areas, although some small sections are missing or damaged but there are historic examples to use as patterns for replacement pieces. The plaster walls in the front offices and upper level laboratory are severely damaged and crumbling. Throughout the interior of the building the only integrity issues are related to damage caused by neglect and can be easily remedied with simple repairs.
Summary

The Du-Good Chemical Laboratory Building, located at 1215-23 South Jefferson Avenue, St. Louis (Independent City), Missouri is eligible for the National Register of Historic Places under Criterion B: INVENTION and ETHNIC HERITAGE/BLACK for its association with Dr. Lincoln I. Diuguid, the first African American to graduate with an advanced degree from Cornell University. He founded the Du-Good Chemical Laboratory (later the Du-Good Chemical Laboratories and Manufacturers, the Du-Good Chemical Manufacturers, and the Du-Good Microanalytical Chemical Laboratory), which occupied the building from 1947 through 2011. The Du-Good Chemical Laboratory Building is the most closely associated site with Dr. Diuguid and his career (Figure 1). In 1947, Dr. Diuguid converted the 1896, two-story, red brick veterinary infirmary building into his chemical research laboratory and small manufacturing facility which was headquartered in the building for more than sixty years (Figure 2). Dr. Diuguid started his business, the Du-Good Chemical Laboratory, after finding that the only jobs he was offered at the large chemical companies required him to “pass” as a white man and that he would not be allowed to hire other African Americans. In the face of this discrimination, he started his own company in St. Louis where he invented and manufactured the first water-free hand sanitizer (see Figure 9) and other household products, developed industrial processes, including one to plasticize aviation fuel, and conducted medical research, developing treatments for leukemia and cancer as well as anti-malarial drugs. The building is also locally significant for Dr. Diuguid’s role in the St. Louis African American community. He used his business to open up opportunities for young African Americans from the neighborhood and from his classes by offering them jobs with the company and creating opportunities they may not otherwise have had. Dr. Diuguid was also a professor of chemistry at Stowe Teachers College (and later Harris-Stowe Teachers College), Saint Louis University and Washington University in St. Louis while inspiring thousands of students. He personally mentored hundreds of students (the majority of whom were African American) and scientists both in the schoolroom and in Du-Good Chemical Laboratory Building, where he often hired students as aids and tutored those who needed extra help in his classes. As the home of Dr. Diuguid’s business and a location where he even lived

for a time, the Du-Good Chemical Laboratory Building is most closely associated with Dr. Diuguid’s professional career. Although he also taught at local colleges, his research and business was all conducted in the building and he even tutored students in the building. Dr. Diuguid never changed the location of the business even as he moved to various houses and taught at three local universities. The period of significance ends in 1966 although significant activities continued but no more specific date can be provided.4

Building History

The Du-Good Chemical Laboratory Building was constructed in 1896 as a two-story veterinary hospital owned by R. E. Garley; the architect and contractor are not known.5 It appears that Garley never occupied the St. Louis Veterinary Infirmary’s building (Figure 3) or only occupied it for a very short time period because William F. Heyde was listed as a veterinary surgeon working out of the building in 1898.6 In 1902 A. F. Heyde (it is unknown if he was related to

5 St. Louis, Missouri, Inactive and Active Building Permits.

William F. Heyde) took out a building permit for contractor C. H. Poertner to construct a stable at the same address that would be used by William F. Heyde as a veterinary hospital; it is not clear if this stable replaced an earlier stable or was an addition to the existing hospital building, although the hospital building still has concrete horse stalls on the first floor of the main building and along the west wing at the back of the property.\(^7\) William F. Heyde had a frame shed and an open shelter constructed on the property in 1906 (most likely the open wooden structure [non-extant] shown on the 1908 fire insurance map [See Figures 10-12]) but otherwise no major changes were made while he remained in the building through 1947. That year Dr. Diuguid purchased the building and took out an occupancy permit for a laboratory, which would become the Du-Good Chemical Laboratory and was listed as a chemical manufactory in the city directories.\(^8\) In 1955 Dr. Diuguid took out another occupancy permit to expand the use to a laboratory and manufacturing facility, still under the Du-Good Chemical Laboratory name. Dr. Diuguid used the rooms at the front of the building for his offices and the second floor above as his laboratory, with the rooms behind the offices used for assembling his manufactured products and the stables across the back of the property used for storage and to house animals for his experiments. The Du-Good Chemical Laboratory remained in the building until 2011 when Dr. Diuguid was forced to retire because of complications from injuries he sustained in 2006 when he was assaulted by a Hurricane Katrina refugee he had hired to help clean the building.\(^9\) The building remains empty but was sold to MLK Construction in 2015 and is being rehabilitated.

Dr. Lincoln Isaiah Diuguid, 1917-2015 (Figures 1, 2, 4, 5, 6)

Dr. Lincoln Isaiah Diuguid, the founder and owner of the Du-Good Chemical Laboratory, was born in Lynchburg, Virginia in 1917 as the grandchild of former slaves and the youngest of Lewis Walter Diuguid and Betty Alice McCoy Diuguid’s nine children.\(^10\) He shoveled coal and snow to pay for his room and board (and his father sold his life insurance policy to help pay tuition) while attending West Virginia State College where he earned a bachelor’s degree in

\(^7\) “Building News,” *St. Louis Daily Record*, 23 October 1902, p5.

\(^8\) St. Louis, Missouri, Inactive and Active Building Permits; Gould’s Commercial Register; Gould’s Red Book; Polk-Gould City St. Louis City Directory.

\(^9\) Ibid, Laurent; Vincent Diuguid.

chemistry and science education. He took 21 hours of classes a semester despite being told by his advisors that it would be difficult for an African American to find employment as a scientist in the late 1930s.11 After graduating magna cum laude in 1938, Diuguid attended Cornell University and graduated with a master’s degree in organic chemistry in 1939, becoming the first African American to graduate from Cornell with an advanced degree.12 He then started his doctoral studies but his advisor discouraged him, believing a doctorate would not overcome the racism he would face. Rather than ignore his advisor, Diuguid left Cornell to become the head of the chemistry department at Arkansas State College from 1939 to 1943. After the start of World War II, Diuguid was drafted but assigned to continue his research and his role as the head of the chemistry department at Arkansas State College while working for the Army as the analytical chemist at the Pine Bluff Armory, where he developed a method for analyzing the sulfur in mustard gas (he would later study mustard gas as a treatment for leukemia).13

In 1943, he returned to Cornell on a research fellowship to resume his doctoral studies while continuing to do research for the Army. It was while working on his doctoral degree that Diuguid developed a prophylactic malaria treatment. At the time, the only treatments were quinine and Chloroquine, both of which were expensive and difficult to make in large quantities and only worked at a specific point in the life of the malaria parasite. The drug Diuguid developed acted to prevent the infection in the first place, making it much more effective in combatting malaria.

After receiving his PhD, Dr. Diuguid remained at Cornell working on a number of post-doctoral research projects. Dr. Diuguid first worked with Professor John R. Johnson on ketenes, which are important precursor chemicals in many organic chemistry reactions. The technique Doctors Diuguid and Johnson developed included a new method to synthesize straight chain di-basic acids from ketenes that allowed for 90 percent yields and created ketenes much more efficiently for use in many other industrial chemical applications, including a variety of acetates (which are used as catalysts and base materials for industrial processes and in industrial cleaning products).14

Dr. Diuguid also worked with Dr. Albert Bloomquist doing research for B. F. Goodrich Company studying the processes used in refining fuel. They developed new synthesizing techniques that increased fuel yields 79 percent, which the company sold to Standard Oil. After this success they had working together, Dr. Bloomquist tried to get Dr. Diuguid a job with B. F.

11 Ibid.

Goodrich, who had sold the process they developed to Standard Oil for a substantial profit, but the company refused to hire African Americans. Dr. Diuguid continued his research and developed a process to convert aviation fuel into plastic that made the plastic more malleable, a process still used by many industries today. Again, rather than lead to a job offer, or at least funding for the development, Dr. Diuguid only received “a handshake and a pat on the back.”

Despite these successes, Dr. Diuguid was not able to find a job in corporate America because of his race. Even with the financial success brought about by Dr. Diuguid’s process to increase fuel production, B. F. Goodrich had an explicit policy of not hiring African Americans. Dr. Diuguid was offered a job with a chewing gum company, but they wanted him to “pass” as a white man and he would not be allowed to hire any African Americans, so he turned the job down. National Airlines also offered him a job but on the condition that he would not be able to have any contact with the other employees. Dr. Diuguid’s experiences in industrial chemistry and his unsuccessful attempts to find a job with a corporation led him to follow his brother William (who owned a variety shop) to St. Louis where he purchased what had been the St. Louis Veterinary Infirmary property and opened the Du-Good Chemical Laboratory. He also lived in the building through 1952 before moving into a house on North Newstead.

Du-Good Chemical Laboratory and Invention

Through his company, the Du-Good Chemical Laboratory, Dr. Diuguid worked with major companies, the United States Army, hospitals, medical schools, and colleges to analyze compounds for them. Dr. Diuguid worked with companies throughout the country and even overseas (including Parke Davis and Company in Hounslow, Middlesex, Great Britain) as well as numerous St. Louis-based national companies (Monsanto, Anheuser-Busch and McDonnell-Douglas). As his company grew, with dozens of clients, it also expanded, doing research not only in chemical analysis and development, but also aerodynamics, including studies about plasma flow properties for re-entry of space craft that were carried out for the McDonnell Aircraft Company. Other clients included numerous oil companies such as the Carter Oil Company and Standard Oil, chemical companies like the Dow Chemical Company, DeSoto Chemical Company, and the Cole Chemical Company, and industrial companies like the Chrysler Corporation, the Alco Valve Company, and Armour & Company.

In addition to its extensive corporate work, the Du-Good Chemical Laboratory also worked with college chemistry departments and medical schools, including Dr. Diuguid’s alma mater, Cornell University, Harris Stowe College, Washington University in St. Louis, St. Louis University, the University of Missouri, the University of Illinois, Kansas University and the Kansas University Medical Center and even international schools like Moscow State University and the University

16 Ibid; Vincent Diuguid; KSDK News Channel 5; “Lincoln I. Diuguid’s Files.;” Laurent, Allen, Ross, Todd; Polk-Gould St. Louis City Directory (1958), 357.
17 “Lincoln I. Diuguid’s Files.”
of Nigeria, among others. In addition to his work for universities, Dr. Diuguid also did extensive work in medical research. Dr. Diuguid worked on leukemia research for Jewish Hospital (St. Louis), received grants from the Leukemia Guild, and worked with Jefferson Barracks on medical issues.18

On top of all the commercial and medical research by Dr. Diuguid, he also invented new techniques, processes and chemical compounds, both in conjunction with the commercial and medical research clients as well as for his own company. After Dr. Diuguid’s father died of cancer in 1955, he spent much of his time researching potential cures for cancer. Dr. Diuguid received grants and worked extensively with the Leukemia Guild of St. Louis to explore the potential of the compounds that could be developed from mustard gas, based in part on research he had conducted at the Pine Bluff’s Armory. The compounds Dr. Diuguid developed were intended to take advantage of the rapid growth of cancer cells in such a way that the cancer cells would absorb the compounds faster than the healthy cells so the cancer would be destroyed with fewer side effects than traditional chemotherapy.19 This line of research did not result in full human trials but Dr. Diuguid continued his cancer research, developing over 3,000 different compounds that could have potentially been a cancer treatment including a compound listed by the National Cancer Institute.20 A later line of his cancer research involved a protein that had a 100 percent success rate curing spontaneous tumors in mice and rabbits and he also used it to heal a soft sarcoma in his dog and to cure a growth on his own face with injections of the protein.21 Although none of his cancer treatments entered clinical trials with humans, his research was the basis for later developments in cancer treatment including research into the compound listed by the National Cancer Institute as a potential line of inquiry.

The medical research done at the Du-Good Chemical Laboratory extended beyond cancer research. Dr. Diuguid developed a test to detect thyroid hormones in blood serum and worked with scientists at Jefferson Barracks to refine the test to also work with spinal and brain fluid. Dr. Diuguid also continued his research on malaria and conducted several studies in concert with Jewish Hospital (St. Louis) and authored several articles and a chapter in a book on radio-immune analysis.22

Dr. Diuguid also made numerous developments in industrial chemistry. Dr. Diuguid developed a method to reclaim paraffin from waste oil sludge. Reclaiming the paraffin increased the yields and helped to eliminate some of the waste that was otherwise produced. He also worked with Standard Oil to synthesize a zirconium hemin complex. Standard Oil contacted Dr. Diuguid because their scientists suspected a contaminant in a cracking unit (part of the oil refining

18 Ross.
19 “Leukemia Guild Backs Research for Drugs to Combat Disease.”
20 Allen.
21 Sorkin, “Professor and Pioneering Black Chemist Dies at 97.”
process) was poisoning their catalyst. Dr. Diuguid’s independent research confirmed the zirconium hemin complex was in fact the contaminant in the refining process. By discovering what the contaminant was and how it formed, Dr. Diuguid was then able to create a method to eliminate the compound from the catalytic process, correcting the problem for Standard Oil.

Dr. Diuguid also worked with the Interterm Company to figure out why its baseboard heaters were malfunctioning in less than two years, threatening to drive the company out of business. Dr. Diuguid discovered the antifreeze used in the radiators was converted by high heat into compounds that damaged the copper pipes. Dr. Diuguid developed a series of additives to counteract the effect allowing Interterm Company to correct the problem, saving the company.

He also worked with the McDonnell Aircraft Company. The company studied plasma flows that formed around spacecraft during re-entry to help develop the materials used for the heat shields on the re-entry vehicles. In addition, he worked on ways to reduce shear noise in jet aircraft while studying the effects of turbulent flows and even did atmospheric modeling of Mars.

Dr. Diuguid helped Anheuser-Busch as well. The brewery used feldspar, a type of diatomaceous earth, to clarify Busch Beer. The process created waste that cost $1,500,000 a year to dispose. Dr. Diuguid developed a process that allowed the waste feldspar to be turned into glass that the brewery used in its beer bottles, saving the company money while recycling a waste product.

At the same time Dr. Diuguid was working with industrial companies and performing medical research, Dr. Diuguid also developed a line of consumer products. Dr. Diuguid invented the first hand sanitizer (which was a powder that would liquefy as people rubbed it between their hands and then evaporate), a waterless based product that was not able to find a market at the time he developed it so he produced and sold it himself. He invented a general skin cream and also developed a Kreation Facial Cream to treat acne and avoid acne scars that could also be used to treat first and second degree burns, aiding in healing and scar prevention. After a car accident, Dr. Diuguid’s son Vincent had extensive scars on his face and was expected to have to see a plastic surgeon to reduce the scarring. After using his father’s Kreation Facial Cream, Vincent’s scars were eliminated and surgery was not needed. Studies by Johnson and Johnson confirmed that the cream could cure acne and heal scars from first and second degree burns. Dr. Diuguid also developed a line of cosmetics specifically for African Americans, including makeup, a dry shampoo and shaving cream. In addition to medical and cosmetic goods, Dr. Diuguid developed...

23 Ibid; “Cornell Alumni Lincoln I. Diuguid, PhD ’45;” Sorkin, “Professor and Pioneering Black Chemist Dies at 97.”
24 Ibid; Todd; Allen; Laurent.
25 Ibid.
26 “Dr. Lincoln Diuguid Files.”
28 Vincent Diuguid.
29 Vincent Diuguid.
products as diverse as an insect repellant, a wig cleaner, a window cleaner and a general household cleaner.³⁰

Dr. Diuguid was never able to secure a distribution deal for his consumer products so he turned the Du-Good Chemical Laboratory into the Du-Good Chemical Laboratories and Manufacturers and started manufacturing the products on site. Dr. Diuguid would travel to trade shows around the country and advertised his products in African American newspapers and magazines. Dr. Diuguid would ship his products to retailers, hairdressers, and corner stores throughout the United States, most owned by African Americans, as well as selling his products directly out of the Du-Good Chemical Laboratory Building. Dr. Diuguid had his children help with the manufacturing, distribution and sale of the products as well as students and neighborhood children that he hired. Dr. Diuguid’s consumer product lines reached consumers nationally and added to the success of the Du-Good Chemical Laboratories and Manufacturers.³¹

Throughout Dr. Diuguid’s career, he was the only known African American to run his own chemical company in St. Louis. There is little information about the number of African Americans working for the major chemical companies in St. Louis (such as the Mallinckrodt Chemical Company and Monsanto) but Dr. Diuguid’s difficulty in finding employment with a major corporation indicates that few companies where hiring African Americans at the time. In addition, the fact that so many large companies from around the world contracted with Dr. Diuguid indicates that he was recognized as a leading chemist able to conduct experiments and develop processes that those companies were not able to do in house. On a national level, many of Dr. Diuguid’s African American contemporaries were professors or worked for universities rather than in industry, including chemists like Marie Daley, the first African American woman to get a PhD in chemistry and went on to be a professor, Percy Julian, who did his research at DePauw University (Greencastle, IN) and developed glaucoma and arthritis treatments, and Garret Morgan, the first African American professor at the U. S. Naval Academy.³²

By finding a way to prove his worth through the work he did, Dr. Diuguid could work in the field he loved, writing over thirty published journal articles in addition to his numerous inventions and developments, while creating a successful business despite the racism he faced. As he grew the Du-Good Chemical Laboratories, many of the companies that refused to hire him directly ended up working with Dr. Diuguid on later projects, hiring his company as an outside research consultant. The Du-Good Chemical Laboratories is a physical reminder of the success of Dr. Diuguid despite the racism that he faced.

The Du-Good Chemical Laboratories and African American History

The Du-Good Chemical Laboratories was formed by Dr. Diuguid in response to the discrimination he faced while trying to find employment in industrial science fields. After facing

³⁰ Ibid; “Lincoln I. Diuguid’s Files;” Ross; Allen; Todd.
³¹ Ibid; KSDK News Channel 5.
racism so blatant that Dr. Diuguid was told he would have to pass as a white man or would be isolated from his coworkers and not allowed to talk to them, he set out to enter the field by starting his own company. Shortly after starting the Du-Good Chemical Laboratories, he also began teaching at Stowe College, which at the time was an African American teachers college which, after the Brown v. Board of Education ended segregation in education throughout the country, merged with Harris College, the state normal school, to form Harris Stowe College, where Dr. Diuguid continued to teach. His ability to grow the Du-Good Chemical Laboratories, while still working as a full-time professor (and eventually the head of the chemistry department at Harris Stowe) and while also teaching as a visiting professor at both St. Louis University and Washington University in St. Louis, is an indication of the will and determination it took for Dr. Diuguid to succeed in the sciences in the face of racial discrimination.33

Dr. Diuguid formed Du-Good Chemical Laboratories in response to all the companies that refused to hire him because he was African American and he used his company to help the African American community. Many of his products were marketed specifically to the African American community, especially his make-up line and his hair care products. Dr. Diuguid marketed his products in African American publications and many of his wholesale customers were businesses owned and operated by African Americans. For a brief time when he first opened the building, Dr. Diuguid even rented space to a beauty salon that used his shampoo.34

Dr. Diuguid’s extensive teaching career inspired thousands of students, including Ray Grant, who worked as a senior policy advisor for the FDA, Guy Tucker, a former head meteorologist for the National Weather Service, and Calvin Riley, a former teacher who founded the George Vashon History Museum, which has a re-creation of Dr. Diuguid’s lab and examples of the company’s consumer product containers.35 Each of these men had also worked at the Du-Good Chemical Laboratories while students of Dr. Diuguid. Dr. Diuguid also regularly had his students (the majority of whom were African American) come to the building when they needed extra credit or tutoring.36 In addition to the myriad students he taught and hired to work in his building, Dr. Diuguid regularly hired young African Americans from the neighborhood to work in the building. In the 1950s Dr. Diuguid was talking to a man working in a liquor store and ended up giving him a job in his lab. The man was inspired by Dr. Diuguid to go on to college and in 1993 Dr. Diuguid received a letter from the unidentified man to say “thank you for getting me out of that liquor store;”37 the letter was accompanied by a picture of the man as he was graduating from college.38
The Du-Good Chemical Laboratories is also important to the African American community not only because of Dr. Diuguid’s professional success, but also for the inspiration he offered. Besides his success in business, Dr. Diuguid used his role as a teacher to influence hundreds of students. He would often hire students in his class to work in the Du-Good Chemical Laboratories, offering African American students (and white students, after the integration of Stowe and Harris) practical work experience in a lab while earning some extra money for school. In a report to qualify for research contracts with the federal government in the early 1970s, Dr. Diuguid stated that:

besides expanding it’s (sic) business, the Du-Good Chemical Manufacturing Company [provided] employment for professional, skilled, semi-skilled and unskilled black people located in an abject poverty area with an extremely high percentage of unemployment.

This demonstrates the positive impact Dr. Diuguid had on the community while still running a successful business. The desire to aid his students also extended to his neighbors and other people with whom he crossed paths. Even the injuries that ultimately lead to Dr. Diuguid’s death were caused when a refugee from Hurricane Katrina who was working for Dr. Diuguid doing janitorial work at the Du-Good Chemical Laboratories mugged Dr. Diuguid, a man who Dr. Diuguid had taken in and tried to help like so many of his students and the employees with whom he worked. His impact as a teacher continued after he retired as a professor because he also developed a course specifically for teachers on how to teach chemistry to elementary school children, extending his influence across future generations.

Dr. Diuguid’s work at the Du-Good Chemical Laboratories in the face of segregation and racism make the Du-Good Chemical Laboratories an important physical reminder of the successes possible in the face of adversity. The success Dr. Diuguid achieved while running the Du-Good Chemical Laboratories in the face of segregation and racism has resulted in numerous honors (see Figures 7 and 8), including awards from the St. Louis Section of the American Chemical Society, the City of Lynchburg (Virginia), Washington University, the American Cancer Society and the St. Louis American newspaper as well as being named man of the year by the Omega Psi Phi Fraternity (see Figure 7). He has also been honored with the display of his picture and biography hung in the St. Louis Science Center as the inaugural inductee for the institution’s “Blacks in Science” award and his name is embedded in the St. Louis Gateway Classic.

39 Ibid.
40 “Lincoln I. Diuguid’s Files.”
41 Ibid.
43 “Cornell Alumni Lincoln I. Diuguid, PhD ’45.”
44 “Dr. Lincoln Diuguid: Salute to Excellence;” “Lincoln I. Diuguid: A Scientist, Despite Color Barriers.”
Du-Good Chemical Laboratory Building

Name of Property: St. Louis (Independent City), MO

County and State: n/a

Name of multiple listing (if applicable):

Foundation Walk of Fame. Dr. Diuguid also received a special citation from the American Chemical Society for his contributions to chemistry and medicine.

Conclusion

The Du-Good Chemical Laboratory Building was the headquarters for Dr. Diuguid’s career from 1947 through 2011. From this building, his scientific contributions ranged from the oil industry and plastic manufacturing to the space program, as well as numerous other manufacturers while also making breakthroughs in medicine and consumer goods. Dr. Diuguid developed over 3,000 separate compounds just for cancer research, as well as products and procedures for industry. At the same time, Dr. Diuguid also invented, manufactured, and marketed his own line of consumer products, ranging from cosmetics to household cleaners. Throughout its time as the Du-Good Chemical Laboratory Building, the building was where Dr. Diuguid invented and developed products, processes and procedures in a myriad of different fields, making the Du-Good Chemical Laboratories an important scene of invention in St. Louis and the building most closely associated with Dr. Lincoln I. Diuguid.

In addition to the building’s importance as the site of Dr. Diuguid’s inventions, it was also associated with his contributions to the African American community. Dr. Diuguid started the business in response to the racism he faced as an African American and created a successful African American owned business. He used his business not only to make money, but also to help the African American community, whether by hiring African Americans from the neighborhood or from among his students. He also developed products specifically for the African American market, including make-up and dry shampoos. Dr. Diuguid further helped the African American community by working with other African American owned businesses to market and sell his commercial products. Dr. Diuguid’s influence on the African American community also extended to his work at Stowe College when it was a black college and later at Harris Stowe, which continued to have a predominantly African American student body, some of whom worked for Dr. Diuguid at the Du-Good Chemical Laboratory Building. His legacy not only extends across a myriad of industries but also across generations of students who were inspired by him not only in the classroom but also as a mentor and role model.

Bibliography

“1215 S. Jefferson, St. Louis, Missouri Map.” Google Maps [Website]. Available at: https://www.google.com/maps/place/1215+S+Jefferson+Ave,+St.+Louis,+MO+63104/@38.6201502,-90.221946,17z/data=!3m1!4b1!4m5!3m4!1s0x87d8b37b5f83892f:0xe59323509cc383!8m2!3d38.620146!4d-90.219752?hl=en. Accessed 15 May, 2015.

“Building News.” St. Louis Daily Record. 23 October 1902, p5.

Diuguid, Vincent, Son of Dr. Lincoln Diuguid. Interview by Maloney, Timothy P. St. Louis. 20 October 2016.

Riley, Calvin, Curator of the George B. Vashon Research Center. Interview by Maloney, Timothy P. St. Louis, 14 October, 2016.

St. Louis, Missouri. City of St. Louis. Division of Building and Inspection. Microfilm Room. Inactive and Active Building Permits.

Du-Good Chemical Laboratory Building
Name of Property
St. Louis (Independent City), MO
County and State
n/a
Name of multiple listing (if applicable)

Verbal Boundary Description
The northern 87 feet 6 inches of Lots 21, 22, and 23 in Block Number 7 of Stanford’s Addition and in Block Number 1812 of the City of St. Louis fronting 87 feet 6 inches on the west line of Jefferson Avenue by a depth westwardly of 85 feet and bounded on the north by an alley and on the south by a line 32 feet 6 inches north of the north line of Rutger Street and addressed as 1215-1223 S. Jefferson Avenue.

Verbal Boundary Justification
These boundaries incorporate all the property that has been historically associated with this building and the property’s legal description.
Du-Good Chemical Laboratory Building

Name of Property
St. Louis (Independent City), MO
County and State
n/a

Name of multiple listing (if applicable)

Figure 1: Dr. Diuguid, photo from private collection of MLK Construction (St. Louis), n.d.
Figure 2: Dr. Diuguid in front on 1215 S. Jefferson, photo from private collection of MLK Construction (St. Louis), n.d.
Du-Good Chemical Laboratory Building
Name of Property
St. Louis (Independent City), MO
County and State
n/a
Name of multiple listing (if applicable)

Figure 3: 1215 S. Jefferson ca. 1896, photo from private collection of MLK Construction (St. Louis)
Du-Good Chemical Laboratory Building

Name of Property
St. Louis (Independent City), MO
County and State
n/a

Name of multiple listing (if applicable)

Figure 4: Dr. Diuguid, photo from private collection of MLK Construction (St. Louis), n.d.
Figure 5: Dr. Diuguid in his lab, photo from private collection of MLK Construction (St. Louis), n.d.
Figure 6: Dr. Diuguid in his lab, photo from private collection of MLK Construction (St. Louis), n.d.
Figure 7: Phi Kappa Phi Certificate, from private collection of MLK Construction (St. Louis), January 5, 1945
Figure 8: Lynchburg’s Ambassador of Goodwill Recognition Certificate, from private collection of MLK Construction (St. Louis), August 2, 1986
Figure 9: Hand Soap Ad, from private collection of MLK Construction (St. Louis), n.d.
Du-Good Chemical Laboratory Building

Name of Property
St. Louis (Independent City), MO

County and State
n/a

Name of multiple listing (if applicable)

Figure 10: 1908 Sanborn
Du-Good Chemical Laboratory Building

Name of Property
St. Louis (Independent City), MO

County and State
n/a

Name of multiple listing (if applicable)

Figure 11: 1932 Sanborn
Du-Good Chemical Laboratory Building

<table>
<thead>
<tr>
<th>Name of Property</th>
<th>St. Louis (Independent City), MO</th>
</tr>
</thead>
<tbody>
<tr>
<td>County and State</td>
<td>n/a</td>
</tr>
<tr>
<td>Name of multiple listing (if applicable)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 12: 1951 Sanborn
Figure 13: Bing Contextual Map
Du-Good Chemical Laboratory Building

Name of Property
St. Louis (Independent City), MO

County and State
n/a

Name of multiple listing (if applicable)

Figure 14: Google Site Map

1215 S Jefferson Ave
38.62014, -90.21975
Du-Good Chemical Laboratory Building
Name of Property
St. Louis (Independent City), MO
County and State
n/a
Name of multiple listing (if applicable)

Section number Figures Page 34

Figure 15: First Floor Photo Log

EXST. GROUND LEVEL FLOOR PLAN
SCALE: 1/32" = 1'-0"
Du-Good Chemical Laboratory Building
Name of Property
St. Louis (Independent City), MO
County and State
n/a
Name of multiple listing (if applicable)

Figure 16: Second Floor Photo Log
Microanalysis, Research & Consulting Chemist

773-5007