Standard Work Specifications

Field Guide for

Manufactured Housing

created by

Missouri Department of Natural Resources,
Division of Energy
Health and Safety

2.01 Safe Work Practices

2.0100 Safe Work Practices

2.0100.1 Global Worker Safety

- **2.0100.1a Prevention through design** ... 16
- **2.0100.1b Hand protection** .. 16
- **2.0100.1c Respiratory protection** ... 17
- **2.0100.1d Electrical safety** .. 19
- **2.0100.1e Carbon monoxide (CO)** ... 20
- **2.0100.1f Personal Protective Equipment** .. 21
- **2.0100.1g Confined space safety** ... 22
- **2.0100.1h Power tool safety** ... 23
- **2.0100.1i Chemical safety** .. 24
- **2.0100.1j Ergonomic safety** ... 24
- **2.0100.1k Hand tool safety** ... 25
- **2.0100.1l Slips, trips, and falls** .. 26
- **2.0100.1m Thermal stress** .. 26
- **2.0100.1n Fire safety** ... 27
- **2.0100.1o Asbestos-containing materials (ACM)** .. 28
- **2.0100.1p Lead paint assessment** .. 29
- **2.0100.1q Site security** .. 31
- **2.0100.1r Crawl space safety** .. 32

2.0102 Insulation

- **2.0102.1 Insulation Worker Safety** ... 33
- **2.0102.1a Worker safety** .. 33
- **2.0102.1b Asbestos containing materials (ACM)** ... 33
- **2.0102.1c Materials** ... 35
- **2.0102.1d Lead paint assessment** ... 35

2.0103 Heating and Cooling Equipment

- **2.0103.2 Heating and Cooling Worker Safety** .. 38
- **2.0103.2a Worker safety** .. 38
- **2.0103.2b Mercury** ... 38
- **2.0103.2c Asbestos** ... 39
- **2.0103.2d Personal protective equipment (PPE)** .. 40
- **2.0103.2e Combustible gas detection** ... 41
- **2.0103.2f Carbon monoxide (CO)** ... 43
- **2.0103.2g Sealant** ... 44
- **2.0103.2h Safety devices** ... 45

2.0107 Basements and Crawl Spaces

- **2.0107.5 Prework Qualifications (Home Installation)** 47
- **2.0107.5a Installation deficiencies** ... 47
- **2.0107.5b Stabilization** .. 48
2.02 Combustion Safety

2.0201 Combustion Safety General
2.0201.1 Combustion Appliance Zone (CAZ) Testing
2.0201.1a Assessment ... 49
2.0201.1b Fuel leak detection ... 50
2.0201.1c Venting ... 51
2.0201.1d Base pressure test ... 53
2.0201.1e Depressurization test .. 53

2.0201.2 Combustion Safety - Make-up Air
2.0201.2a Outside combustion make-up air .. 55
2.0201.2b New appliances ... 55
2.0201.2c CO detection and warning equipment ... 56
2.0201.2d Gas ovens .. 57
2.0201.2e Gas range burners ... 58
2.0201.2f Solid fuel burning appliances ... 59

2.0201.3 Vented Combustion Appliance Safety Testing
2.0201.3a Spillage Test ... 61
2.0201.3b Carbon monoxide (CO) test in appliance vent .. 62
2.0201.3c Final test out .. 63

2.0202 Unvented Space Heaters
2.0202.1 Unvented Space Heaters: Propane, Natural Gas, and Kerosene Heaters
2.0202.1a Removal ... 65
2.0202.1b Occupant education .. 66

2.0203 Vented Gas Appliances
2.0203.1 Combustion Air for Natural Draft Appliances
2.0203.1a Required combustion air .. 68
2.0203.1b Additional combustion air (if action is required) .. 69
2.0203.1c Spillage testing ... 71

2.0203.2 Combustion Flue Gas—Orphaned Water Heaters
2.0203.2a Spillage testing .. 73
2.0203.2b Flue gas removal (chimney liner or approved methods) ... 73
2.0203.2c Retesting spillage ... 75
2.0203.2d Required combustion air ... 76
2.0203.2e Additional combustion air (if action is required) .. 77

2.0203.4 Occupant Education
2.0203.4a Occupant health and safety .. 80
2.0203.4b Occupant education .. 81

2.0204 Isolation
2.0204.1 Isolating Combustion Water Heater Closet
2.0204.1a Work assessment ... 83
2.0204.1b Air seal closet .. 83
2.0204.1c Materials ... 84
2.0204.1d Post-work testing/verification .. 84
2.03 Safety Devices

2.03.01 Combustion Safety Devices

2.03.01.1 Smoke Alarm

2.03.01.1a Smoke alarm (hardwired) ... 86

2.03.01.1b Smoke alarm (battery operated) ... 86

2.03.01.2 Carbon Monoxide Alarm or Monitor

2.03.01.2a CO detection and warning equipment (hardwired) 88

2.03.01.2b CO detection and warning equipment (battery operated) 89

2.04 Moisture

2.04.03 Vapor Barriers

2.04.03.4 Pier and Skirting Foundations—Ground Moisture Barriers

2.04.03.4a Coverage ... 90

2.04.03.4b Material specification .. 91

2.04.03.4c Overlap seams ... 92

2.04.03.4d Fastening .. 94

2.04.04 Space Conditioning

2.04.04.2 Crawl Spaces—Preliminary Dehumidification

2.04.04.2a Close vents ... 96

2.04.04.2b Drying ... 97

2.04.04.2c Drying time ... 97

2.05 Radon

2.05.01 Air Sealing

2.05.01.2 Pier and Skirting Foundation—Venting

2.05.01.2a Venting ... 99

2.05.01.2b Occupant education ... 99

2.06 Electrical

2.06.02 Electric Hazards

2.06.02.1 Static Electric Shock

2.06.02.1a Rigid fill tube ... 101

2.06.02.1b Metal coupler grounding .. 102

2.06.02.2 House Current Electric Hazard

2.06.02.2a Metal skin and frame grounding ... 105

2.06.02.2b Metal fill tube grounding .. 106

2.06.02.2c Electrical tool safety .. 107

2.06.02.2d Aluminum wiring ... 109
3.1203 Replacement
3.1203.3 Replacement of Manufactured Housing Windows and Doors
3.1203.3a Work assessment ... 154
3.1203.3b Lead paint assessment ... 154
3.1203.3c Window or door selection ... 156
3.1203.3d Rough opening preparation .. 156
3.1203.3e Window and door installation ... 157
3.1203.3f Safety .. 158
3.1203.3g Maintenance and occupant education 159

3.13 Floors
3.1301 Penetrations
3.1301.1 Electrical, HVAC, Plumbing, Gas, Dryer Vent, and General Penetrations Through Bottom Board
3.1301.1a Work assessment ... 160
3.1301.1b Soft bottom board repair ... 160
3.1301.1c Hard bottom board repair ... 161
3.1301.1d Bottom board penetrations ... 161
3.1301.1e Materials ... 163
3.1301.2 Electrical, HVAC, Plumbing, Gas, Dryer Vent, and General Penetrations Through Flooring
3.1301.2a Work assessment ... 164
3.1301.2b Floor air sealing (decking, subfloor, floor decking) 164
3.1301.2c Sealant selection ... 166
3.1301.2d Floor repair ... 167
3.1301.2e Structural materials ... 169
3.1301.2f High temperature application .. 170

3.16 Ducts
3.1601 Duct Preparation
3.1601.5 Preparation and Mechanical Fastening
3.1601.5a Preparation .. 173
3.1601.5b Metal to metal ... 174
3.1601.5c Flex to metal .. 175
3.1601.5d Duct board to duct board .. 176
3.1601.5e Duct board to flexible duct .. 176
3.1601.5f Duct board plenum to air handler cabinet 178
3.1601.5g Boot to wood ... 179
3.1601.5h Boot to gypsum ... 181
3.1601.5i Duct board to flex ... 182

3.1602 Duct Sealing
3.1602.8 Supply Plenum (Furnace to Trunk Duct Connection) in Both Upflow and Downflow Air Handler Configurations
3.1602.8a Work assessment ... 185
3.1602.8b Preparation ... 185
3.1602.8c Plenum rebuild or repair ... 187
3.1602.8d Repair work access ... 188
3.1602.8e Safety testing .. 190
3.1602.8f Performance testing ... 192

3.1602.9 Crossover Ducts
3.1602.9a Work assessment ... 195
3.1602.9b Flexible crossover duct connections 195
3.1602.9c Support ... 197
3.1602.9d Through-the-rim crossover duct .. 198
3.1602.9e Repair work access for through-the-rim crossover 199
3.1602.9f Attic crossover ... 199
3.1602.9g Combustion Appliance Zone (CAZ) testing 200
3.1602.9h Performance testing ... 201

3.1602.10 Hard and Flex Branch Ducts
3.1602.10a Work assessment ... 203
3.1602.10b Reduce excess flex duct length ... 203
3.1602.10c Duct connection repairs ... 204
3.1602.10d Repair work access ... 206
3.1602.10e Combustion Appliance Zone (CAZ) testing 207
3.1602.10f Performance testing ... 208

3.1602.11 Air Sealing System
3.1602.11a New component to new component sealant selection 211
3.1602.11b New component to existing component 212
3.1602.11c Existing component to existing component 214
3.1602.11d Performance testing .. 215

3.1602.12 Air Sealing System Components
3.1602.12a Duct boot to interior surface ... 218
3.1602.12b Air handler cabinet outside conditioned space 219
3.1602.12c Performance testing .. 220

3.1602.13 Return—Framed Platform
3.1602.13a Preparation .. 223
3.1602.13b Infill and backing ... 223
3.1602.13c Sealant selection ... 225

3.17 Additions
3.1701 Attached Additions
3.1701.1 Holes, Penetrations, and Connection Seam
3.1701.1a Work assessment ... 227
3.1701.1b Hole, seam, line, and penetration sealing 227
3.1701.1c Materials ... 228
3.1701.1d Addition exterior wall air sealing 228
3.1701.1e Addition interior wall air sealing 229
3.1701.1f Addition floor air sealing (decking, subfloor, floor decking) ... 229
3.1701.1g Sealant selection ... 230
3.1701.1h Floor repair .. 231
3.1701.1i Structural materials ... 233
3.1701.1j Ceiling hole repair ... 234
4 Insulation

4.10 Attics

4.1003 Attic Ceilings

4.1003.8 Installing Fiberglass Blown Insulation for Flat, Bowed, or Vaulted Ceilings (via Roof Side Lift)

4.1003.8a Attic, ceiling, and roof verification ... 239
4.1003.8b Attic access ... 241
4.1003.8c Blowing machine set up .. 243
4.1003.8d Fiberglass blown insulation installation .. 245
4.1003.8e Roof reattachment ... 246
4.1003.8f Verification of details .. 248

4.1003.9 Installing Fiberglass Blown Insulation for Flat, Bowed, or Vaulted Ceilings (via Exterior Access from Top of Roof)

4.1003.9a Attic, ceiling, and roof verification ... 249
4.1003.9b Attic access ... 251
4.1003.9c Blowing machine set up .. 253
4.1003.9d Fiberglass blown insulation installation .. 255
4.1003.9e Patching and sealing openings ... 256
4.1003.9f Verification of details .. 259

4.1003.10 Installing Fiberglass Blown Insulation for Flat, Bowed, or Vaulted Ceilings (via Interior Access Through the Ceiling)

4.1003.10a Attic, ceiling, and roof verification ... 261
4.1003.10b Construction prep .. 263
4.1003.10c Attic access ... 264
4.1003.10d Blowing machine set up .. 265
4.1003.10e Fiberglass blown insulation installation .. 267
4.1003.10f Patching and sealing holes .. 268
4.1003.10g Verification of details .. 269

4.1088 Special Considerations

4.1088.6 Installing Insulation at Flat and Cathedral Ceiling Transition Wall

4.1088.6a Insulation installation verification ... 271
4.1088.6b Access attic ... 271
4.1088.6c Blowing ... 271
4.1088.6d Spray two-part foam ... 273
4.1088.6e Batt .. 273
4.1088.6f Patching and sealing access points ... 274
4.1088.6g Verification of details .. 274
4.1088.6h Onsite Documentation .. 275

4.11 Walls

4.1104 Manufactured Housing Wall Insulation

4.1104.1 Stuffing Wall Cavities with Fiberglass Batts

4.1104.1a Access wall cavities ... 276
4.1104.1b Exterior wall cavity inspection .. 277
4.1104.1c Fiberglass batt installation tool (stuffer) ... 279
4.1104.1d Fiberglass batt installation ... 280
4.1104.1e Sub-sheathing patch and repair ... 282
4.1104.1f Reattachment ... 282
4.1104.1g Onsite documentation .. 284

4.13 Floors

4.1303 Manufactured Housing Floor Cavity Insulation

4.1303.1 Insulation of Floor Cavity with Blown Material
4.1303.1a R-value .. 285
4.1303.1b Work assessment ... 285
4.1303.1c Insulate floors ... 286
4.1303.1d Materials ... 286
4.1303.1e Occupant education .. 287

4.1303.2 Insulation of Floor Cavity with Batt Material
4.1303.2a R-value .. 289
4.1303.2b Work assessment ... 289
4.1303.2c Insulate floors ... 290
4.1303.2d Materials ... 293
4.1303.2e Occupant education .. 295

4.14 Basements and Crawl Spaces

4.1402 Basements and Crawl Space Walls
4.1402.2 Basement Wall Insulation—No Groundwater Leakage
4.1402.2a R-value .. 297
4.1402.2b Air barrier ... 297
4.1402.2c Vapor permeability .. 299

4.1488 Special Considerations
4.1488.1 Climate Considerations for Insulating Water Lines Located Between Bottom Board and Ground
4.1488.1a Work assessment ... 301
4.1488.1b Installation .. 301
4.1488.1c Occupant education ... 303

4.16 Ducts

4.1601 Insulating Ducts
4.1601.3 Insulation and Vapor Barrier
4.1601.3a Ducts in unconditioned spaces (e.g., crawl space, attic, unconditioned basements) .. 305
4.1601.3b Ducts within floor assemblies .. 305
4.1601.3c Exposed metal .. 306

4.1601.4 Insulating Flex Ducts
4.1601.4a Removal of existing flexible ducting .. 308
4.1601.4b Selection of new flexible ducting ... 308
4.1601.4c Sizing of new flex ... 309
4.1601.4d Installation of flex ... 310
4.1601.4i Insulation of all fittings ... 314
4.1601.4k Vermin proofing ... 316
4.1601.4l CAZ testing ... 317

4.1601.5 Insulating Metal Ducts
4.1601.5a Selection of duct insulation material .. 319
4.1601.5b Duct sealing .. 320
4.1601.5c Attachment of duct insulation ... 321
4.1601.5d Taping of the vapor barrier .. 322
4.1601.5e Vermin proofing .. 323

5 Heating and Cooling

5.30 Forced Air

5.3001 Design
5.3001.3 Replace Return Air Systems that Incorporate Floor Cavity (Belly) and/or Attic as the Return Air Pathway
5.3001.3a Close return air openings ... 325
5.3001.3b Alternate return air system .. 325
5.3001.3c Zone pressure test ... 326
5.3001.3d Combustion Appliance Zone (CAZ) testing 326
5.3001.3e Occupant education .. 327

5.3003 System Assessment and Maintenance
5.3003.1 Data Plate Verification
5.3003.1a Data plate verification ... 329
5.3003.3 Evaluating Air Flow
5.3003.3a Total air flow .. 330
5.3003.3b External static pressure .. 330
5.3003.3c Pressure .. 331
5.3003.3d Filter Inspection .. 332
5.3003.3e Balancing room flow: new ductwork ... 333
5.3003.3f Supply wet bulb and dry bulb ... 333
5.3003.3h Temperature rise: gas and oil furnaces only 334
5.3003.5 Refrigerant Line Inspection
5.3003.5a Insulation ... 336
5.3003.5b Ultraviolet (UV) protection of insulation 336
5.3003.5c Sizing .. 337
5.3003.5d Installation quality ... 337
5.3003.5e Support .. 337
5.3003.8 Evaporative Cooler Maintenance and Repairs
5.3003.8a Assessment and diagnosis ... 339
5.3003.8b Repair and maintenance .. 341
5.3003.8c Occupant education

5.3003.11 Heating and Cooling Controls

- **5.3003.11a** Removal of mercury-based thermostats

5.3003.14 Combustion Analysis of Gas-Fired Appliances (LP and Natural Gas)

- **5.3003.14a** Gas Pressure
- **5.3003.14b** Place appliance in operation
- **5.3003.14c** Carbon dioxide (CO2) and oxygen (O2)
- **5.3003.14d** Carbon monoxide (CO) in flue gas
- **5.3003.14e** Testing/inspection holes

5.3003.15 Combustion Analysis of Oil-Fired Appliances

- **5.3003.15a** Oil system: smoke test
- **5.3003.15c** Oil filter
- **5.3003.15d** Fuel pressure
- **5.3003.15e** Oil system: steady state efficiency (SSE)
- **5.3003.15f** Net stack temperature
- **5.3003.15g** Carbon dioxide (CO2) and oxygen (O2)
- **5.3003.15h** Excess combustion air
- **5.3003.15i** CO in flue gas
- **5.3003.15j** Testing/inspection holes

6 Ventilation

6.60 Exhaust

6.6002 Components

- **6.6002.4** Ducts (Exhaust Fans)
 - **6.6002.4a** Duct design and configuration
 - **6.6002.4b** Duct insulation
 - **6.6002.4c** Duct support
 - **6.6002.4d** Duct connections
 - **6.6002.4e** Duct materials
 - **6.6002.4f** Total exhaust airflow

6.6003 Fans

- **6.6003.1** Surface-Mounted Ducted
 - **6.6003.1a** Hole through interior surface
 - **6.6003.1b** Wiring
 - **6.6003.1c** Fan mounting
 - **6.6003.1d** Backdraft damper
 - **6.6003.1e** Duct-to-fan connection
 - **6.6003.1f** Fan housing seal
 - **6.6003.1g** Fan to interior surface seal
 - **6.6003.1h** Air flow
 - **6.6003.1i** Preventing air leakage caused by exhaust fans
 - **6.6003.1j** Combustion safety

- **6.6003.2** Inline
 - **6.6003.2a** Wiring
 - **6.6003.2b** Access
6.6003.2c Fan mounting ... 379
6.6003.2d Backdraft damper ... 380
6.6003.2e Duct connections ... 380
6.6003.2f Boot to interior surface seal.. 382
6.6003.2g Air flow .. 383
6.6003.2h Preventing air leakage caused by exhaust fans ... 384
6.6003.2i Combustion safety ... 385

6.6003.5 Garage Exhaust Fan
6.6003.5a System selection ... 388
6.6003.5b Air leakage ... 388
6.6003.5c Combustion safety .. 389

6.6003.6 Fan Placement (Whole House/Common Space Exhaust Only)
6.6003.6a Clearance ... 392
6.6003.6b Power source .. 392
6.6003.6c Location .. 392
6.6003.6d Duct/vent ... 393
6.6003.6e Attachment ... 393
6.6003.6f Total exhaust airflow .. 394

6.6005 Appliance Exhaust Vents
6.6005.1 Clothes Dryer
6.6005.1a Clothes dryer ducting .. 396
6.6005.1b Termination fitting .. 398
6.6005.1c Makeup air ... 399
6.6005.1d Combustion safety ... 400
6.6005.1e Occupant education .. 402

6.6005.2 Kitchen Range
6.6005.2a Wiring .. 404
6.6005.2b Fan venting ... 404
6.6005.2c Fan ducting ... 405
6.6005.2d Termination fitting .. 407
6.6005.2e Makeup air ... 407
6.6005.2f Combustion safety ... 408
6.6005.2g Occupant education .. 410

6.61 Supply
6.6188 Special Considerations
6.6188.2 Removing Supply Vents from Garages
6.6188.2a Removal of supply/return in garage .. 411
6.6188.2b Patching of the hole in the duct system created by removal ... 411
6.6188.2c Sealing of the patch ... 411
6.6188.2d Removal of discarded ducts .. 412
6.6188.2e Patching of the register hole in garage ... 412
6.6188.2f External static pressure testing ... 412
6.6188.2g CAZ testing ... 413
6.62 Whole Building Ventilation

6.6205 Exhaust-Only System

6.6205.1 Manufactured Housing Exhaust-Only Strategies

6.6205.1a Assessment .. 415
6.6205.1b Selection ... 416
6.6205.1c Location .. 417
6.6205.1d Climate considerations ... 418
6.6205.1e Combustion Appliance Zone (CAZ) testing .. 419
6.6205.1f Occupant education ... 420
6.6205.1g Total exhaust airflow .. 421

6.6206 Equipment Removal

6.6206.1 Decommissioning Existing Exhaust or Supply Ventilation Systems

6.6206.1a Power supply .. 423
6.6206.1b Removal ... 423
6.6206.1c Repair ... 424
6.6206.1d Combustion Appliance Zone (CAZ) testing .. 424

6.6288 Special Considerations

6.6288.2 Sound Ratings—New Fan Installation

6.6288.2a Primary ventilation system/continuously operating fan .. 426
6.6288.2b Intermittent spot ventilation system .. 426

7 Baseload

7.81 Water Heating

7.8101 Water Use Reduction

7.8101.1 Shower Head and Faucet Aerator

7.8101.1a Work assessment ... 428
7.8101.1b Selection ... 428
7.8101.1c Installation ... 428
7.8101.1d Decommissioning ... 431

7.8102 Installation and Replacement

7.8102.2 Storage-Type Appliance

7.8102.2a Hazardous material removal .. 433
7.8102.2b Equipment removal .. 433
7.8102.2c New equipment installation .. 434
7.8102.2d Emergency drain pan .. 434
7.8102.2e Expansion tank ... 435
7.8102.2f Temperature and pressure relief valve .. 436
7.8102.2g Dielectric unions .. 437
7.8102.2h Backflow prevention ... 437
7.8102.2i Thermal efficiency ... 438
7.8102.2j Fuel supply .. 440
7.8102.2k Discharge temperature .. 440
7.8102.2l Commissioning of system ... 441
7.8102.2m Occupant safety ... 442
Table of Contents

7.8102.2n Occupant education ... 443

7.8102.3 **On-Demand Appliance**

7.8102.3a Hazardous material removal ... 444

7.8102.3b Equipment removal .. 444

7.8102.3c New equipment installation .. 445

7.8102.3d Emergency drain pan .. 445

7.8102.3e Temperature and pressure relief valve .. 446

7.8102.3f Dielectric unions .. 447

7.8102.3g Backflow prevention and pressure regulator ... 448

7.8102.3h Thermal efficiency ... 448

7.8102.3i Required combustion air .. 449

7.8102.3j Venting of flue gases .. 451

7.8102.3k Flue gas testing .. 452

7.8102.3l Electric and fossil fuel supply ... 454

7.8102.3m Cold water supply ... 454

7.8102.3n Discharge temperature ... 454

7.8102.3o Commissioning of system .. 455

7.8102.3p Ambient CO ... 456

7.8102.3q Occupant education ... 457

7.8103 **Maintenance/Inspection**

7.8103.1 **Storage-Type Appliance**

7.8103.1a Health and safety .. 458

7.8103.1b Visual inspection ... 459

7.8103.1c Thermal efficiency ... 460

7.8103.1e Temperature and pressure relief valve ... 462

7.8103.1f Maintenance records .. 463

7.8103.1g Occupant safety ... 464

7.8103.1h Occupant education .. 464

7.8103.2 **On-Demand Appliance**

7.8103.2a Health and safety .. 466

7.8103.2b Visual inspection ... 467

7.8103.2c Temperature and pressure relief valve ... 468

7.8103.2d Flue gas testing .. 469

7.8103.2e Required combustion air ... 471

7.8103.2f Venting of flue gases .. 473

7.8103.2g Fuel supply .. 474

7.8103.2h Cold water supply ... 475

7.8103.2i Discharge temperature ... 476

7.8103.2j Test the system safety and operation ... 477

7.8103.2k Maintenance records .. 478

7.8103.2l Occupant health and safety ... 478

7.8103.2m Occupant education ... 479
2.0100.1 - Global Worker Safety

Desired Outcome:
Work completed safely without injury or hazardous exposure

Note:
The authority having jurisdiction may require that a licensed professional perform certain tasks outlined in this detail.

2.0100.1a - Prevention through design

Desired Outcome:
Work completed safely without injury or hazardous exposure

Specification(s):
Design will be incorporated to eliminate or minimize hazards (e.g., material selection, access to equipment for installation and maintenance, placement of equipment, ductwork and condensate lines)

Objective(s):
Prevent worker injuries
Reduce risk exposure to toxic substances and physical hazards

2.0100.1b - Hand protection

Desired Outcome:
Work completed safely without injury or hazardous exposure

Specification(s):
Durable and wrist-protecting gloves will be worn that can withstand work activity

Objective(s):
Minimize skin contact with contaminants
Protect hands from hazards
Unsafe
Recognize potential risks

Safe
Wear appropriate hand protection

GOOD: Wear nitrile gloves when handling mastic
Inspect gloves for holes and damage to minimize risk

2.0100.1c - Respiratory protection

Desired Outcome:
Work completed safely without injury or hazardous exposure

Specification(s):
If the risk of airborne contaminants cannot be prevented, proper respiratory protection will be provided and worn (e.g., N-95 or equivalent face mask)

When applying low pressure 2-component spray polyurethane foam, air purifying masks with an organic vapor cartridge and P-100 particulate filter will be used

When applying high-pressure SPF insulation, supplied air respirators (SARs) will be used

Consult MSDS for respiratory protection requirements

OSHA 1910.134 shall be followed for the implementation of a respiratory protection program
Objective(s):
Minimize exposure to airborne contaminants (e.g., insulation materials, mold spores, feces, bacteria, chemicals)

Unsafe
Workers need to properly protect their airways when retrofitting

Best Practice
Retrofits can have multiple different respiratory protection requirements

When web-enabled, click on link for OSHA 1910.134.

Whenever airborne contaminants are a possibility, wear an N-95 mask
For two-component spray insulation, P-100 respirators should be used
All P-100s should be fitted to the individual worker

When working with high-pressure
When unsure what level of protection
2.0100.1d - Electrical safety

Desired Outcome:
Work completed safely without injury or hazardous exposure

Specification(s):
An electrical safety assessment will be performed

All electric tools will be protected by ground-fault circuit interrupters (GFCI)

Three-wire type extension cords will be used with portable electric tools

Worn or frayed electrical cords will not be used

Water sources (e.g., condensate pans) and electrical sources will be kept separate

Metal ladders will be avoided

Special precautions will be taken if knob and tube wiring is present

Aluminum foil products will be kept away from live wires

For arc flash hazards, NFPA 70E will be consulted

Objective(s):
Avoid electrical shock and arc flash hazards
Unsafe
Inspect house for unsafe electrical situations
Attics and crawl spaces should be inspected closely for electrical safety before work begins

Use GFCIs and three-wire extension cords for all power tools
Electrical wiring should not be located near a water source
Use fiberglass ladders in place of metal

Recognize if knob and tube wiring is present and take special precautions
Follow NFPA 70E guidelines for arc flash hazards

2.0100.1e - Carbon monoxide (CO)

Desired Outcome:
Work completed safely without injury or hazardous exposure

Specification(s):
All homes will have a carbon monoxide alarm

Ambient CO will be monitored during combustion testing and testing will be discontinued if ambient CO level inside the home or work space exceeds 35 parts per million (ppm)

Objective(s):
Protect worker and occupant health

Tools:
1. CO meter

2.0100.1f - Personal Protective Equipment

Desired Outcome:
Work completed safely without injury or hazardous exposure

Specification(s):
MSDS and OSHA regulations will be consulted for equipment and protective clothing would be worn if contaminants are present (e.g., insulation materials)

Eye protection will always be worn (e.g., safety glasses, goggles if not using full-face respirator)

Objective(s):
Protect worker from skin contact with contaminants
Minimize spread of contaminants

Provide eye protection

Workers should be aware of work required and dress appropriately

After

Ensure workers have proper protective equipment for work environment and materials

2.0100.1g - Confined space safety

Desired Outcome:
Work completed safely without injury or hazardous exposure

Specification(s):
Spaces with limited ingress and egress and restricted work area will be considered confined space

Access and egress points will be located before beginning work

Inspection will be conducted for hazards, such as damaged or exposed electrical conductors, mold, sewage effluent, friable asbestos or fiberglass, pests, and other potential hazards

Adequate ventilation will be provided

Use of toxic material will be reduced

Objective(s):
Prevent build-up of toxic or flammable contaminants

Reduce risk to the workers in the confined space

Provide adequate access and egress points

Prevent electrical shock
Best Practice

Locate all access and egress points of confined spaces before entering

Perform visual inspection of confined spaces before beginning work

Check for frayed or worn electrical wires

In confined spaces, use a ventilator to provide fresh air

Check GHS labels and Safety Data Sheets for all materials to minimize hazards

2.0100.1h - Power tool safety

Desired Outcome:
Work completed safely without injury or hazardous exposure

Specification(s):
Power tools will be inspected and used in accordance with manufacturer specifications and OSHA regulations to eliminate hazards such as those associated with missing ground prongs, ungrounded circuits, misuse of power tools, noise, and improper or defective cords or extension cords. All tools must be maintained in proper operating condition with all guards securely in place.

All devices used will be verified as GFCI protected or double insulated.

Exhaust gases from compressors and generators will be prevented from entering interior space.
Objective(s):
Prevent power tool injuries
Prevent buildup of toxic or flammable contaminants

2.0100.1i - Chemical safety

Desired Outcome:
Work completed safely without injury or hazardous exposure

Specification(s):
Hazardous materials will be handled in accordance with manufacturer specifications, MSDS and OSHA standards to eliminate hazards associated with volatile organic compounds (VOCs), sealants, insulation, contaminated drywall, dust, foams, asbestos, lead, mercury, and fibers

Appropriate personal protective equipment (PPE) will be provided
Workers will be trained on how to use PPE
Workers will be expected to always use appropriate PPE during work

Objective(s):
Prevent worker exposure to toxic substances

Best Practice
New GHS/MSDS labeling is clear and concise—workers should be familiar with how to read new Safety Data Sheets

Best Practice
Workers should be trained on how to wear PPE, be provided with proper PPE, and know when to use it
2.0100.1j - Ergonomic safety

Desired Outcome:
Work completed safely without injury or hazardous exposure

Specification(s):
Appropriate PPE will be used (e.g., knee pads, bump caps, additional padding)

Proper equipment will be used for work

Proper lifting techniques will be used

Objective(s):
Prevent injuries from awkward postures, repetitive motions, and improper lifting

Unsafe
Workers will take precautions to protect themselves on the job site

Best Practice
Hard hats, knee pads, bump caps, and team lifts help to prevent injury

Tools:
1. Hard hats
2. Knee pads
3. Bump caps

2.0100.1k - Hand tool safety

Desired Outcome:
Work completed safely without injury or hazardous exposure

Specification(s):
Hand tools will be maintained in safe working order and used for intended purpose
Objective(s):
Prevent injuries

2.0100.1l - Slips, trips, and falls

Desired Outcome:
Work completed safely without injury or hazardous exposure

Specification(s):
Caution will be used around power cords, hoses, tarps, and plastic sheeting

Precautions will be taken when ladders are used, when working at heights, or when balancing on joists

Walk boards will be used when practical

When scaffolding is used, manufacturer set-up procedures will be followed

Appropriate footwear and clothing will be worn

Objective(s):
Prevent injuries due to slips, trips, and falls

2.0100.1m - Thermal stress

Desired Outcome:
Work completed safely without injury or hazardous exposure

Specification(s):
Ensure staff is aware of risks during extreme weather including the symptoms of heat stroke, heat exhaustion, and hypothermia

Appropriate ventilation, hydration, rest breaks, and cooling equipment will be provided

911 will be dialed when necessary

Objective(s):
Prevent heat stroke, heat stress, and cold stress related injuries
Attics and crawl spaces can be dangerous work places in the heat and the cold.

DO NOT HESITATE to call 911 in potential cases of heat stroke or hypothermia.

Tools:
1. Cool vests
2. Ventilator

Keep workers comfortable with hydration and cool vests.
Provide fresh and moving air when working in hot confined spaces.

2.0100.1n - Fire safety

Desired Outcome:
Work completed safely without injury or hazardous exposure.

Specification(s):
Ignition sources will be identified and eliminated (e.g., turn off pilot lights and fuel supply).
Use of flammable material will be reduced and fire-rated materials will be used.

Objective(s):
Prevent a fire hazard

Unsafe
Fire hazards should be removed from the work area with the permission and/or assistance of the homeowner

Best Practice
Set combustion appliances to off or pilot to minimize risk of fire

2.0100.1o - Asbestos-containing materials (ACM)

Desired Outcome:
Work completed safely without injury or hazardous exposure

Specification(s):
Assess potential asbestos hazard; if unsure whether material contains asbestos, contact a qualified asbestos professional to assess the material and to sample and test as needed

If suspected ACM is in good condition, do not disturb

If suspected ACM is damaged (e.g., unraveling, frayed, breaking apart), immediately isolate the area(s)

For suspected ACM that is damaged or that must be disturbed as part of the retrofit activity, contact an asbestos professional for abatement or repair in accordance with federal, state, and local requirements; only a licensed or trained professional may abate, repair, or remove ACM

When working around ACM, do not:

- Dust, sweep, or vacuum ACM debris
- Saw, sand, scrape, or drill holes in the material
- Use abrasive pads or brushes to strip materials

Asbestos abatement or repair work should be completed prior to blower door testing; exercise appropriate caution when conducting blower door testing where friable asbestos or vermiculite attic
insulation is present to avoid drawing asbestos fibers into the living space (i.e., use positively pressurized blower door testing) unless the material has been tested and found not to contain asbestos

Objective(s):
Protect workers and occupants from potential asbestos hazards

![Before](image1)

If materials that may contain asbestos are found in the home, do not disturb the material or run blower door

Materials:
1. Containment shroud
2. Caution tape

![Best Practice](image2)

If asbestos is suspected, call an EPA-accredited professional

Do not disturb ACM by vacuuming, dusting, or sweeping

Do not disturb ACM by drilling, sanding, scraping, sawing, etc.

2.0100.1p - Lead paint assessment

Desired Outcome:
Work completed safely without injury or hazardous exposure
Specification(s):
Presence of lead based paint in pre-1978 homes will be assumed unless testing confirms otherwise.

The Environmental Protection Agency (EPA) Renovation, Repair, and Painting (RRP) Program Rule (40 CFR Part 745) in pre-1978 homes and proposed changes to this rule (Federal Register/Vol. 75, No. 87/May 6, 2010) will be complied with, to be superseded by any subsequent final rulemaking or any more stringent state or federal standards.

Objective(s):
Protect workers and occupants from potential lead hazards.

Best Practice
In homes built before 1978, test paint before beginning renovation or assume presence of lead.

Tools:
1. Note: Mask must be worn during testing
2. LeadCheck test kit
3. Utility knife
4. Camera

Materials:
1. Cleaning solution or cleaning wipes
2. Bag or folded paper to catch debris

EPA RRP certification required to conduct Lead Paint assessment.
Clean tools and sample site to prevent contamination

Place catchment bag under sample site to catch any debris. Cut sample site at an angle to expose all older paint layers

Break capsules and shake to mix reagents. Swab sample site for 30 seconds

Check swab for reaction Red indicates lead positive. White is lead negative

If negative, verify validity of test with provided calibration card

Lead in calibration card should test positive and turn spot red

Record test results to maintain documentation

2.0100.1q - Site security

Desired Outcome:
Work completed safely without injury or hazardous exposure
Specification(s):
Work site will be secured to prevent unauthorized entry

Temporarily disconnected equipment will be locked up and tagged out

All loose or unbagged trash and unused materials will be removed from work site daily

Objective(s):
Protect the occupant from exposure to potential hazards

2.0100.1r - Crawl space safety

Desired Outcome:
Work completed safely without injury or hazardous exposure

Specification(s):
The source of all contaminants (e.g., sewage, dead animals, needles) will be corrected, repaired, or removed before performing inspections that require complete access to the crawl space

If appropriate, the contaminant will be neutralized and/or a protective barrier will be installed in the area

Objective(s):
Ensure work safety

Prevent worker exposure to hazards
2.0102.1 - Insulation Worker Safety

Desired Outcome:
Work is completed safely without injury or hazardous exposure

2.0102.1a - Worker safety

Desired Outcome:
Work is completed safely without injury or hazardous exposure

Specification(s):
Woker safety specifications will be followed in accordance with SWS 2.0100 Global Worker Safety

Objective(s):
Prevent injury

Minimize exposure to health and safety hazards

2.0102.1b - Asbestos containing materials (ACM)

Desired Outcome:
Work is completed safely without injury or hazardous exposure

Specification(s):
OSHA asbestos abatement protocol 29 CFR 1926.1101 will be followed if vermiculite insulation is present

Assess potential asbestos hazard; if unsure whether material contains asbestos, contact a qualified asbestos professional to assess the material, and to sample and test as needed

If suspected ACM is in good condition, do not disturb

If suspected ACM is damaged (e.g., unraveling, frayed, breaking apart), immediately isolate the area(s)

For suspected ACM that is damaged or that must be disturbed as part of the retrofit activity, contact an asbestos professional for abatement or repair, in accordance with federal, state, and local requirements; only a licensed or trained professional may abate, repair, or remove ACM
When working around ACM, do not:

- Dust, sweep, or vacuum ACM debris
- Saw, sand, scrape, or drill holes in the material
- Use abrasive pads or brushes to strip materials

Asbestos abatement or repair work should be completed prior to blower door testing; exercise appropriate caution when conducting blower door testing where friable asbestos or vermiculite attic insulation is present to avoid drawing asbestos fibers into the living space (i.e., use positively pressurized blower door testing) unless the material has been tested and found not to contain asbestos

Objective(s):
Protect workers and occupants from potential asbestos hazards

Materials:
1. Containment shroud
2. Caution tape
2.0102.1c - Materials

Desired Outcome:
Work is completed safely without injury or hazardous exposure

Specification(s):
All materials will be handled in accordance with manufacturer specifications or material safety data sheets (MSDS) standards

Objective(s):
Eliminate hazards associated with incorrect, defective, or improperly used or installed materials

Best Practice
Workers should be familiar with MSDS for materials used and know where to locate MSDS in case of emergency

Best Practice
New Safety Data Sheet and GHS label formatting is easier to quickly interpret
2.0102.1d - Lead paint assessment

 Desired Outcome:
Work is completed safely without injury or hazardous exposure

 Specification(s):
Presence of lead based paint in pre-1978 homes will be assumed unless testing confirms otherwise

 The Environmental Protection Agency (EPA) Renovation, Repair, and Painting (RRP) Program Rule (40 CFR Part 745) in pre-1978 homes and proposed changes to this rule (Federal Register/Vol. 75, No. 87/May 6, 2010) will be complied with, to be superseded by any subsequent final rule making or any more stringent state or federal standards

 Objective(s):
Protect worker and occupant from potential lead hazards

 ![Best Practice](image)
In homes built before 1978, test paint before beginning renovation or assume presence of lead

 Tools:
1. Note: Mask must be worn during testing
2. LeadCheck test kit
3. Utility knife
4. Camera

 Materials:
1. Cleaning solution or cleaning wipes
2. Bag or folded paper to catch debris

 EPA RRP certification required to conduct Lead Paint assessment.
Clean tools and sample site to prevent contamination

Place catchment bag under sample site to catch any debris. Cut sample site at an angle to expose all older paint layers

Break capsules and shake to mix reagents. Swab sample site for 30 seconds

Check swab for reaction. Red indicates lead positive. White is lead negative

If negative, verify validity of test with provided calibration card

Lead in calibration card should test positive and turn spot red

Record test results to maintain documentation
2.0103.2 - Heating and Cooling Worker Safety

Desired Outcome:
Work completed safely without injury or hazardous exposure

2.0103.2a - Worker safety

Desired Outcome:
Work completed safely without injury or hazardous exposure

Specification(s):
Follow all worker safety specifications in SWS 2.0100 Global Worker Safety section

Objective(s):
Prevent injury

Minimize exposure to health and safety hazards

2.0103.2b - Mercury

Desired Outcome:
Work completed safely without injury or hazardous exposure

Specification(s):
When replacing existing thermostats, identify and dispose of any mercury containing thermostats in accordance with Environmental Protection Agency (EPA) guidance

Objective(s):
Protect worker and occupant from mercury exposure
Unsafe

Mercury thermostats should be replaced and disposed of properly

Do NOT dispose of mercury thermostats in the trash--find local recycling and more information at thermostat-recycle.org

Paraphrased from 40 CFR 273.14: A universal waste mercury-containing thermostat or container containing only universal waste mercury-containing thermostats should be labeled or marked clearly with any of the following phrases: "Universal Waste-Mercury Thermostat(s)," "Waste Mercury Thermostat(s)," or "Used Mercury Thermostat(s)." **Contact thermostat-recycle.org or earth911.org for recycling options.

2.0103.2c - Asbestos

Desired Outcome:
Work completed safely without injury or hazardous exposure

Specification(s):
Suspected asbestos hazards will be identified in furnaces (e.g., gaskets), wood stoves, zonal heating devices, electrical wiring insulation, boilers, and pipe insulation and corrected in accordance with EPA guidance

Workers will take precautionary measures to avoid exposure

Objective(s):
Protect worker and occupant from asbestos exposure
Unsafe

Have an AHERA-certified professional test all areas with suspected asbestos. Remediate in accordance with EPA rules.

2.0103.2d - Personal protective equipment (PPE)

Desired Outcome:
Work completed safely without injury or hazardous exposure

Specification(s):
Workers will wear personal protective equipment (PPE) as needed to protect themselves against exposure to hazards (e.g., pests, sewage, flooded duct work, mold, chemicals, scat, viruses)

Long sleeves and long pants should be worn as additional protection from liquid nitrogen and other hazardous materials

Objective(s):
Protect worker from exposure to hazards

Protect worker from skin contact with liquid nitrogen
When working with refrigerants, short sleeves are inappropriate.

When working with refrigerants, workers should dress appropriately.

Wear work gloves when working with metal ducts.

Assess the site and situation to determine proper PPE to minimize risks.

2.0103.2e - Combustible gas detection

Desired Outcome:
Work completed safely without injury or hazardous exposure

Specification(s):
Worker will check for presence of combustible gas leaks before work begins

Leaks will be repaired before work is performed

Objective(s):
Protect worker and occupant from exposure to hazards
Fuel leaks need to be repaired

Repairs need to be tested and verified to no longer leak

Tools:
1. Combustion gas detector
2. Spray bottle

Materials:
1. Noncorrosive leak detection fluid

Paraphrased from 2012 IRC G2417: Leakage will be located using an approved combustible gas detector, a noncorrosive leak detection fluid or an equivalent nonflammable solution. Matches, candles, open flames or other methods that could provide a source of ignition cannot be used. Where leakage or other defects are located, the affected portion of the piping system will be repaired or replaced and retested.

Fuel leaks discovered during initial audit should be flagged

Use approved combustion gas sniffer to see if repaired line still leaks

Repeatedly test repair site for leakage over a 10min period
Allow testing solution to sit on newly repaired pipe joint for 10min

Confirn repair and remove flag

2.0103.2f - Carbon monoxide (CO)

Desired Outcome:
Work completed safely without injury or hazardous exposure

Specification(s):
Workers will check for presence of ambient CO before and during work

CO issues will be addressed before work is performed or continued

Objective(s):
Protect worker and occupant from exposure to hazards

Tools:
1. CO meter
Test for CO in entire home, particularly around combustion appliances

If CO issues are found, clean and tune appliances to remediate issues

All workers should wear personal ambient CO monitors and halt work if levels exceed 35ppm

2.0103.2g - Sealant

Desired Outcome:
Work completed safely without injury or hazardous exposure

Specification(s):
Pipes will be sealed by a certified professional with an approved fastening process and sealant in accordance with manufacturer specifications (International Fuel Gas Code)

Gas lines will be leak free when tested with an electronic combustible gas leak detector and verified with bubble solution

OR

Gas lines will be leak free when tested by a standing pressure test that meets the approval of the local code

Objective(s):
Install gas lines with no leaks
Best Practice
Call a licensed professional for gas line installations and repairs.

Best Practice
Test any new gas line connections with combustible gas detector, and verify lack of leaks with testing solution

Tools:
1. Combustible gas detector
2. Testing solution

2.0103.2h - Safety devices

Desired Outcome:
Work completed safely without injury or hazardous exposure

Specification(s):
A secondary LP safety detector system (valve, exhaust fan, alarm light) will be installed by a certified professional for propane piping installed below grade

When installing new equipment, a shut off valves will be installed by a certified professional at each gas appliance (ANSI Z21.15)

Objective(s):
Detect accumulation of dangerous levels of propane in below-grade areas

Isolate appliances from the rest of the system for emergencies, removal, or repairs
Best Practice

Call a certified professional
2.0107.5 - Prework Qualifications (Home Installation)

 Desired Outcome:
 Manufactured home is properly installed

2.0107.5a - Installation deficiencies

 Desired Outcome:
 Manufactured home is properly installed

 Specification(s):
 Any installation deficiencies that may affect worker safety or integrity or installed measures will be repaired before starting work

 Objective(s):
 Ensure site is safe and ready for upgrade

Unsafe

The concrete pad is not centered under the pier, rendering the pier susceptible to tilting or collapse

Safe

Approved, properly installed piers, anchors, and tie downs

Tools:

1. Level
2. Cordless driver drill
3. Flashlight

Inspect homes for safety before work. Look for stuck doors and windows, buckled siding, and loose tie-downs as evidence of settling. Inspect piers to ensure that they are solid and level. Check for loose or missing wooden shims and wedges. Inspect anchors and straps for tightness and proper installation per manufacturer's recommendations.
Carefully inspect the foundation piers. Look for loose or missing shims and wedges.

2.0107.5b - Stabilization

Desired Outcome:
Manufactured home is properly installed

Specification(s):
Home must be stabilized in accordance with manufacturer specifications or local authority having jurisdiction

Objective(s):
Ensure the home is secured properly

Prevent injury

Minimize exposure to health and safety hazards

Unsafe
Unstable mobile homes are unsafe work environments. Do not crawl under mobiles that are not stabilized

Safe
Properly stabilized homes have a solid foundation and have anchored straps, unless otherwise indicated by manufacturer.
2.0201.1 - Combustion Appliance Zone (CAZ) Testing

Desired Outcome:
Accurate information about appliance safe operation is gathered

2.0201.1a - Assessment

Desired Outcome:
Accurate information about appliance safe operation is gathered

Specification(s):
Emergency problems (e.g., ambient gas levels greater than 10% Lower Explosion Limit (LEL), ambient CO levels that exceed 70 ppm) will be communicated clearly and immediately to the customer, the home shall be evacuated, and appropriate personnel (e.g.: HVAC technician, utility, emergency services) shall be contacted.

Significant problems (e.g., gas leak less than 10% LEL, ambient CO levels that exceed 35 ppm but less than 70 ppm) will be communicated clearly and immediately to the customer and appropriate solutions will be suggested.

Examine appliance for signs of damage, misuse, improper repairs, and lack of maintenance

Objective(s):
Ensure system does not have potentially fatal problems

Unsafe combustion appliances indicate need for repair or replacement

In cases of replacement, ensure new appliance is safe and sized properly
2.0201.1b - Fuel leak detection

 Desired Outcome:
 Accurate information about appliance safe operation is gathered

 Specification(s):
 Inspect and test for gas or oil leakage at connections of natural gas, propane piping, or oil systems

 If leaks are found, immediate action will be taken to notify occupant to help ensure leaks are repaired

 The report will specify repair for leaks and replacement for hazardous or damaged gas or oil connectors and pipes

 Objective(s):
 Detect fuel gas leaks
Determine and report need for repair

Before
Fuel lines should be inspected for leakage

After

Tools:
1. Gas sniffer
2. Spray bottle

Materials:
1. Bubble solution

Paraphrased from 2012 IRC G2417: Leakage will be located using an *approved* combustible gas detector, a noncorrosive leak detection fluid or an equivalent nonflammable solution. Matches, candles, open flames or other methods that could provide a source of ignition cannot be used. Where leakage or other defects are located, the affected portion of the *piping system* will be repaired or replaced and retested.

2.0201.1c - Venting

Desired Outcome:
Accurate information about appliance safe operation is gathered

Specification(s):
For oil systems that require a draft regulator, the presence and operability of it (that draft regulator) will be verified and tested.

Combustion venting systems will be inspected for damage, leaks, disconnections, inadequate slope, and other safety hazards.

Objective(s):
Determine if a regulator is present and working

Determine whether vent system is in good condition and installed properly

Unsafe

If ventilation system puts occupants at risk, it needs immediate attention

Safe

Properly vented appliances make a house healthier and more efficient
2.0201.1d - Base pressure test

Desired Outcome:
Accurate information about appliance safe operation is gathered

Specification(s):
Baseline pressure for naturally drafting vented appliances will be measured in Combustion Appliance Zone with reference to outdoors

Objective(s):
Measure pressure difference between combustion zone and the outside under natural conditions

Best Practice
Natural conditions—Winter set-up per BPI 1200 standards

Tools:
1. Manometer
2.0201.1e - Depressurization test

Desired Outcome:
Accurate information about appliance safe operation is gathered.

Specification(s):
CAZ depressurization testing will be administered for all atmospherically vented appliances located inside the pressure boundary.

Depressurization test will include exhaust fans, interior door closure, or duct leakage, or a combination thereof; the test will be done to determine the largest negative pressure per BPI Standard 1200.

Objective(s):
Determine worst-case depressurization in combustion zone due mechanical system fans

Best Practice
Follow BPI 1200 standards to determine the largest negative pressure. Test for spillage if required.

Tools:
1. Manometer
2.0201.2 - Combustion Safety - Make-up Air

Desired Outcome:
Buildup of dangerous combustion byproducts in the living space prevented

Note:
The authority having jurisdiction may require that a licensed professional perform certain tasks outlined in this detail.

2.0201.2a - Outside combustion make-up air

Desired Outcome:
Buildup of dangerous combustion byproducts in the living space prevented

Specification(s):
Where applicable, combustion air will be provided from the outside and installed in accordance with the IRC for the type of appliance installed

Objective(s):
Prevent combustion byproducts from entering the house

2.0201.2b - New appliances

Desired Outcome:
Buildup of dangerous combustion byproducts in the living space prevented

Specification(s):
If replacing appliances, a sealed-combustion, direct-vent appliance will be installed if possible. New appliances will be installed in accordance with manufacturer specifications, the IRC and additional applicable codes

Objective(s):
Prevent combustion byproducts from entering the house
Before

Damaged combustion appliances beyond repair should be replaced

After

Sealed-combustion, direct-vent appliances should replace unsafe appliances

Two-pipe 90% efficiency furnaces are viable replacement appliances

Direct vent combustion appliances are also viable replacements

2.0201.2c - CO detection and warning equipment

Desired Outcome:
Buildup of dangerous combustion byproducts in the living space prevented

Specification(s):
CO detection or warning equipment will be installed outside of each separate sleeping area in the immediate vicinity of the bedrooms in accordance with ASHRAE 62.2 and authority having local jurisdiction

Installation will be accomplished by a licensed electrician when required by local code

Objective(s):
Alert occupant to CO exposure
Best Practice
Carbon monoxide alarms should be installed in all homes

Best Practice
Alarms should be mounted near sleeping areas—such as the one marked in red

Tools:
1. Drill

Materials:
1. CO alarm
2. Fasteners

2.0201.2d - Gas ovens

Desired Outcome:
Buildup of dangerous combustion byproducts in the living space prevented

Specification(s):
Gas ovens will be tested for CO

A clean and tune will be conducted if measured CO in the undiluted flue gases of the oven vent at steady state exceeds 225 ppm as measured

Objective(s):
Ensure clean burn of gas ovens
Unsafe
If air-free CO reading exceeds 225ppm, order a clean and tune

Tools:
1. Combustion analyzer with probe

2.0201.2e - Gas range burners

Desired Outcome:
Buildup of dangerous combustion byproducts in the living space prevented

Specification(s):
Specify clean and tune if the flame has any discoloration, flame impingement, an irregular pattern, or if burners are visibly dirty, corroded, or bent

Objective(s):
Ensure clean burn and operation of gas range burners

Before
Discoloration is a clear sign that a gas range needs a clean and tune

After
A properly operating gas range burner should have an even blue flame
Gas ranges should be cleaned and tuned if improper operation is evident.

2.0201.2f - Solid fuel burning appliances

 Desired Outcome:
Buildup of dangerous combustion byproducts in the living space prevented

 Specification(s):
If the solid fuel burning appliance is the primary heat source and has signs of structural failure replace solid fuel burning appliance with UL-listed and EPA-certified appliances if the existing appliance is not UL-listed

 Objective(s):
Ensure safe operations of solid fuel burning appliances

Unsafe solid fuel burning appliances should be replaced. New appliances should be UL-listed and EPA-certified.
Locate data plate to find out appliance ratings

Check appliance rating plates for EPA and UL markings (or CSA, ETL, or WH markings)
2.0201.3 - Vented Combustion Appliance Safety Testing

Desired Outcome:
Accurate information about appliance safe operation is gathered

2.0201.3a - Spillage Test

Desired Outcome:
Accurate information about appliance safe operation is gathered

Specification(s):
In conditions with largest negative pressure as determined from Detail 2.0201.1e:

If spillage in a combustion appliance with a warm vent exceeds two minutes during pressure testing, specify measures to mitigate

If spillage in a combustion appliance with a cold vent exceeds five minutes during pressure testing, specify measures to mitigate

Objective(s):
Detect excessive spillage of combustion gases

Tools:
1. Smoke pencil
2. Timer
3. Mirror

Best Practice
Test all sides of natural draft flues since draft may not be uniform
Missouri Technical Standards require that all vents, whether cold or warm, will be tested to verify that spillage does not exceed 2 minutes.

2.0201.3b - Carbon monoxide (CO) test in appliance vent

Desired Outcome:
Accurate information about appliance safe operation is gathered

Specification(s):
CO will be tested for in undiluted flue gases of combustion appliances

In conditions with largest negative pressure as determined from Detail 2.0201.1e:

If CO levels exceed 400 ppm air-free measurement in furnaces, service will be provided to reduce CO to below these levels (unless CO measurement is within manufacturer specifications)

If CO levels exceed 200 ppm air-free measurement in water heaters or room heaters, service will be provided to reduce CO to below these levels (unless CO measurement is within manufacturer specifications)

Objective(s):
Measure CO and report excessive levels

Tools:
1. Combustion analyzer with probe

Unsafe
CO levels cannot exceed 200ppm as measured, unless to manufacturer specs

Best Practice
Test CO levels in undiluted flue gases and exhaust outlets, when accessible
CO levels cannot exceed 200ppm, or 400ppm air-free CO

Test undiluted flue gases in induced-draft furnaces--check local codes before drilling

Test undiluted flue gases in natural draft water heaters

Test accessible exhaust outlets for direct-vent appliances

Test accessible exhaust outlets for power-vented appliances

2.0201.3c - Final test out

Desired Outcome:
Accurate information about appliance safe operation is gathered

Specification(s):
Final combustion testing will be conducted at project completion to ensure compliance with the above specifications

Objective(s):
Ensure safe operation of combustion appliance within the whole house system after any repair project
Conduct spillage and depressurization testing at the end of the work day

Tools:
1. Manometer
2. Smoke pencil
3. Timer

- Run depressurization test at the end of the work day
- Complete spillage test using chemical smoke pencil
- Test for spillage on all sides of draft diverter

- Complete spillage testing on all combustion appliances
- Complete carbon monoxide testing using a CO detector
2.0202.1 - Unvented Space Heaters: Propane, Natural Gas, and Kerosene Heaters

Desired Outcome:
Elimination of combustion byproducts

2.0202.1a - Removal

Desired Outcome:
Elimination of combustion byproducts

Specification(s):
With the occupant's permission, unvented heaters will be removed, except when used as a secondary heat source and when it can be confirmed that the unit is listed to ANSI Z21.11.2

Units that are not being operated in compliance with ANSI Z21.11.2 should be removed before the retrofit but may remain until a replacement heating system is in place.

Failure to remove unvented space heaters serving as primary heat sources has the potential to create hazardous conditions, and thus any further weatherization services will be reevaluated in the context of potential indoor air quality risks.

Objective(s):
Eliminate sources of combustion byproduct within a living space

Unvented space heaters should be removed with the occupants' permission.

Unvented space heaters can be replaced with properly vented space heaters.
Secure permission to remove unvented space heaters from occupants

Ensure new combustion appliances are vented properly

2.0202.1b - Occupant education

Desired Outcome:
Elimination of combustion byproducts

Specification(s):
Occupant will be educated on potential hazards of unvented combustion appliances (primary or secondary) within a living space

Objective(s):
Inform occupant about possible hazards associated with combustion byproducts and moisture

Unsafe
Unvented space heaters in homes are hazardous to occupants

Best Practice
Clearly communicate the hazards to the occupant in order to inform their decision to remove the appliance
Unvented space heaters significantly increase the risk of house fires.

Unvented combustion gases cause a hazard to all occupants.

Unvented space heaters can create moisture issues in homes, leading to black mold.
2.0203.1 - Combustion Air for Natural Draft Appliances

Desired Outcome:
Sufficient air provided in the Combustion Appliance Zone (CAZ)

2.0203.1a - Required combustion air

Desired Outcome:
Sufficient air provided in the Combustion Appliance Zone (CAZ)

Specification(s):
The required volume of indoor air will be determined in accordance with IRC and authority having jurisdiction, except that where the air infiltration rate is known to be less than 0.40 air changes per hour (ACH), IRC will be used

Exception: Existing appliances that have passed combustion safety testing per BPI 1200 are deemed to have sufficient combustion air

Objective(s):
Determine if existing conditions meet the combustion air calculation

Best Practice

G2407.5.1 (304.5.1) Standard method. The minimum required volume shall be 50 cubic feet per 1,000 Btu/h (4.8 m3/kW).

G2407.5.2 (304.5.2) Known air-infiltration-rate method. Where the air infiltration rate of a structure is known, the minimum required volume shall be determined as follows: For purposes of this calculation, an infiltration rate greater than 0.60 ACH shall not be used in Equations 24-1.

For appliances other than fan assisted, calculate volume using Equation 24-1.
Required Volume (natural draft) ≥ (\(21\text{ft}^3/\text{ACHn}) \times (\text{Input(other)}/1,000\text{BTU/hr})\)

- Input(other) = All appliances other than fan assisted (input in Btu/h).
- ACHn = Air change per hour under natural conditions

Standard: 100,000 BTUH Furnace Input 100,000 x .05 = 5,000 ft³ or 100,000/1000 = 100. 100 x 50 = 5,000 ft³

Known infiltration rate method (assuming ACHn is .50 in this example): (\((21\text{ft}^3/.50)*(100,000/1,000\text{BTU/hr})\)) = 4,200 ft³

2.0203.1b - Additional combustion air (if action is required)

Desired Outcome:
Sufficient air provided in the Combustion Appliance Zone (CAZ)

Specification(s):
Additional combustion air will be provided in accordance with IRC and authority having jurisdiction when necessary to solve spillage problems

Objective(s):
Ensure adequate combustion air for operation of the appliance

Measure the CAZ width. Measure the CAZ length. Measure the CAZ height.
Combustion appliances in a confined space

Tools:
1. Drywall saw
2. Drill
3. Tin snips
4. Tape measure
5. Wire cutters

Materials:
1. Metal ducts
2. 1/4" galvanized hardware cloth mesh
3. Galvanized straps or L-brackets to secure high/low vents
4. Screws
5. Louvered grilles (optional)
6. Louvered doors (optional)

Combustion appliances require 50 cubic feet of volume for every 1,000 Btuh input. If this is not available, provide makeup air in accordance with the IRC G.2407 or local code.

When high/low vents are used, use two metal ducts each having 1 in2 of cross-sectional area for every 4,000 Btuh input. Extend each into the attic above the insulation level, and use 1/4" galvanized hardware cloth mesh on top to screen out insects and vermin. Terminate one vent within 12" of the ceiling, and one vent within 12" of the floor. The vents may be concentric (one inside the other) to save space, so long as the difference between the area of the larger and smaller vents is equal to or greater than the 1 in2/4,000 Btuh requirement.

If using a single large opening in the ceiling, make the opening total 1 in2 per 3,000 Btuh input.

If high/low vents extend horizontally through a CAZ wall, use vents with 1 in2 of area per 2,000 Btuh of input.

Louvered grilles or doors may be used to connect the CAZ to larger sections of the home to achieve the required volume, but be aware that using this approach has higher potential for creating a carbon monoxide pathway into the home than does creating a sealed CAZ with high/low vents.
Select vent sizes based on the total input Btus in the CAZ. Concentric vents are shown.

Cut hole in ceiling and mount high/low vents to framing.

Fasten 1/4" galvanized hardware cloth over high/low vent openings.

Complete installation by adding supports and fasteners as required for stability and durability.

Terminate the low vent within 12" of the floor. This one is mounted inside a section of larger diameter metal duct.

2.0203.1c - Spillage testing

Desired Outcome:
Sufficient air provided in the Combustion Appliance Zone (CAZ)

Specification(s):
If spillage in a combustion appliance with a warm vent exceeds two minutes during pressure testing, specify measures to mitigate.

If spillage in a combustion appliance with a cold vent exceeds five minutes during pressure testing, specify measures to mitigate.

Objective(s):
Detect excessive spillage of combustion gases.
Natural draft appliances should be tested for spillage.

Tools:

1. Smoke pencil
2. Stopwatch or timer

Missouri Technical Standards require that if spillage in a combustion appliance with a cold vent exceeds two minutes during pressure testing, you must specify measures to mitigate.

Inspect appliance for evidence of damage or unsafe operation before testing. Fire up appliance in order to test. Test for spillage—should not exceed 2min. If 2min are exceeded, mitigate.
2.0203.2 - Combustion Flue Gas—Orphaned Water Heaters

Desired Outcome:
Flue gasses successfully removed from the house

2.0203.2a - Spillage testing

Desired Outcome:
Flue gasses successfully removed from the house

Specification(s):
If spillage in a combustion appliance with a warm vent exceeds two minutes during pressure testing, specify measures to mitigate

If spillage in a combustion appliance with a cold vent exceeds five minutes during pressure testing, specify measures to mitigate

Objective(s):
Detect excessive spillage of combustion gases

Orphaned water heaters have oversized flues after a furnace is removed

Missouri Technical Standards require that if spillage in a combustion appliance with a cold vent exceeds two minutes during pressure testing, you must specify measures to mitigate.
2.0203.2b - Flue gas removal (chimney liner or approved methods)

Desired Outcome:
Flue gasses successfully removed from the house

Specification(s):
A chimney liner will be installed in accordance with the IRC or applicable NFPA standard

Objective(s):
Allow water heater to vent properly
Prevent damage to the chimney

Tools:
1. Hammer drill
2. Disposable brushes
3. Tin snips
4. 5/16" nut driver
5. Pulling cone
6. Rope
7. Caulking gun
8. Tape measure
9. 4 1/2" angle grinder with metal cutoff wheel

Materials:
1. Flexible chimney liner
2. Rain cap
3. Top plate
4. B-vent adjustable elbows
5. Tees (if required to connect multiple appliances)
6. Refractory cement
7. Bricks
8. Mortar

Connect chimney liner to appliance in accordance with applicable codes.
Measure from the bottom termination to the chimney crown. Add one foot to the measurement and cut the liner to length.

Pull chimney liner into position (from top or bottom, whichever is easier) with a rope and pulling cone.

Measure and mark the flexible chimney liner at 4 inches above the chimney.

Cut the flexible chimney liner to length.

Install top plate over opening and attach it to the liner.

Fasten the rain cap to the chimney liner.

Seal around penetrations in chimney with refractory (furnace) cement.

Connect appliance vent to the chimney liner.

Use refractory (furnace) cement to seal metal water heater or furnace vents to the masonry chimney.

2.0203.2c - Retesting spillage

Desired Outcome:
Flue gasses successfully removed from the house.
Specification(s):
If a combustion appliance spillage exceeds two minutes during pressure testing, specify measures to mitigate

Objective(s):
Ensure appliance is not spilling longer than two minutes with a warm vent

Tools:
1. Smoke pencil
2. Timer

2.0203.2d - Required combustion air

Desired Outcome:
Flue gasses successfully removed from the house

Specification(s):
The minimum required volume will be 50 cubic feet per 1,000 Btu /h in accordance with IRC and authority having jurisdiction.

Exception: Existing appliances that have passed combustion safety testing per BPI 1200 are deemed to have sufficient combustion air.

Objective(s):
Determine if existing conditions meet the combustion air calculation
Best Practice
If measured volume is less than 50cuft per 1000Btuh, additional combustion air is needed.

Tools:
1. Measuring tape
2. Calculator

Measure the CAZ width. Measure the CAZ length. Measure the CAZ height.

2.0203.2e - Additional combustion air (if action is required)

Desired Outcome:
Flue gases successfully removed from the house

Specification(s):
Additional combustion air will be provided in accordance with IRC or other authority having jurisdiction

Objective(s):
Ensure adequate combustion air for operation of the appliance
Combustion appliances require 50 cubic feet of volume for every 1,000 Btuh input. If this is not available, provide makeup air in accordance with the IRC G.2407 or local code.
Complete installation by adding supports and fasteners as required for stability and durability.

Terminate low vent within 12" of the floor. This one is fastened to a section of larger diameter duct for stability.
2.0203.4 - Occupant Education

Desired Outcome:
Ensure persistence of resident safety

2.0203.4a - Occupant health and safety

Desired Outcome:
Ensure persistence of resident safety

Specification(s):
All homes will have a functioning CO alarm

If CO levels in interior living spaces exceed outdoor levels, potential sources will be investigated and appropriate action taken to reduce them (e.g., have a qualified professional tune, repair, or replace improperly operating combustion appliances; apply weather stripping or conduct air sealing between the garage or crawl space and the home)

Objective(s):
Ensure occupant health and safety

Ensure indoor CO levels do not exceed outdoor CO levels

Best Practice
ALL houses must have carbon monoxide detectors installed near sleeping areas

Best Practice
Compare indoor and outdoor CO levels. In case of elevated indoor CO levels, locate the source and fix the problem

Tools:
1. Combustion analyzer with probe
2. Personal CO monitor
Test all combustion appliances for CO exhaust and check against appropriate action levels for appliance type.

Do not forget to test gas ovens as a potential source of CO -- check results against action levels.

If combustion appliances are source of elevated CO levels, repair or replace as necessary and allowed.

Could CO infiltration be coming from outdoor sources? Air seal and weatherstrip to minimize outdoor pollutants.

2.0203.4b - Occupant education

Desired Outcome:
Ensure persistence of resident safety

Specification(s):
Occupants will be educated on the operation and maintenance of the CO alarm.

Completed work on combustion appliances and recommended maintenance will be reviewed with occupant.

Occupant will be provided information regarding the health effects and risk of high CO concentrations; EPA provides possible expanded actions and offers client education information in an appendix to the protocols.
Objective(s):
Ensure occupant can operate and maintain installations
Inform occupant regarding possible CO hazards

Best Practice
Review CO alarm maintenance with occupant

Best Practice
Provide occupant with information about CO sources, risks, and symptoms
2.0204.1 - Isolating Combustion Water Heater Closet

Desired Outcome:
Isolate combustion water heater closet from conditioned space

Note:

2.0204.1a - Work assessment

Desired Outcome:
Isolate combustion water heater closet from conditioned space

Specification(s):
Installer prework assessment will be conducted to determine:

- Combustion safety
- Proper venting
- Structural integrity
- Roof leaks
- Insect infestation
- Accessibility
- Number, type, size, and location of penetrations

Objective(s):
Ensure combustion appliance is functioning safely
Ensure work space is safe and ready for air sealing
Verify scope of work

2.0204.1b - Air seal closet

Desired Outcome:
Isolate combustion water heater closet from conditioned space

Specification(s):
When the water heater closet contains a heater that is not sealed combustion or power vented, the closet will be isolated/separated from the rest of the home through air sealing with fire-rated materials, if feasible
Avoiding frozen pipes must be considered without creating an additional utility burden (e.g., heat tape)

Objective(s):
Prevent combustion gases from entering living area and minimize extension of interior pressures caused by exhaust fan, dryers, and interior door closure into the water heater closet

2.0204.1c - Materials

Desired Outcome:
Isolate combustion water heater closet from conditioned space

Specification(s):
Only noncombustible materials will be used in contact with chimneys, vents, and flues

Objective(s):
Prevent a fire hazard

Best Practice
When sealing around combustion flue penetrations, use appropriate materials

Tools:
1. Caulk gun
2. Metal snips
3. Drill

Materials:
1. High-temperature caulk
2. 26-gauge steel sheeting
3. Fasteners

2.0204.1d - Post-work testing/verification

Desired Outcome:
Isolate combustion water heater closet from conditioned space

Specification(s):
Blower door assisted zonal pressure diagnostics will be used to verify isolation has been achieved

Objective(s):
Prevent combustion gases from entering living area

Tools:
1. blower door assembly
2. manometer
3. 1/4" hose
4. steel tube or probe
5. drill

Before
The reading is closer to 0, indicating strong connection to the inside.

After
The reading is closer to 50, indicating strong connection to the outside.

Depressurize the house to 50 pascals. Close the CAZ door or otherwise gain access to the CAZ. Reading is closer to 50 pascals indicating combustion closet is connected to the outside.
2.0301.1 - Smoke Alarm

Desired Outcome:
Properly installed smoke alarms

Note:
The authority having jurisdiction may require that a licensed professional perform certain tasks outlined in this detail.

2.0301.1a - Smoke alarm (hardwired)

Desired Outcome:
Properly installed smoke alarms

Specification(s):
When installing hardwired smoke alarms, it will be listed and labeled in accordance with UL 217 and installed in accordance with the IRC or as required by the authority having jurisdiction

Objective(s):
Ensure proper installation

Unsafe
Hard-wired smoke alarm mount with alarm missing

Safe
Hard-wired smoke alarm mount with alarm replaced

2.0301.1b - Smoke alarm (battery operated)

Desired Outcome:
Properly installed smoke alarms
Specification(s):
When installing battery operated smoke alarms, it will be installed in accordance with manufacturer specifications.

Objective(s):
Ensure proper installation

Best Practice
All homes should have UL-217 rated smoke alarms.

Paraphrased from 2012 IRC R314: Smoke alarms will be permitted to be battery operated when installed in buildings without commercial power or when alterations or repairs do not result in the removal of interior wall or ceiling finishes exposing the structure to provide access for hard-wiring, unless there is an attic, crawl space, or basement available with could provide access.

Ceiling mounted smoke alarms can be battery-operated.
Wall mounted smoke alarms must be mounted within 12 inches of the ceiling and per manufacturer's specifications.
2.0301.2 - Carbon Monoxide Alarm or Monitor

Desired Outcome:
Properly installed CO alarms or monitors

Note:
The authority having jurisdiction may require that a licensed professional perform certain tasks outlined in this detail.

2.0301.2a - CO detection and warning equipment (hardwired)

Desired Outcome:
Properly installed CO alarms or monitors

Specification(s):
Hardwired CO detection or warning equipment will be installed in accordance with the ASHRAE 62.2 or as required by the authority having jurisdiction

Installation will be accomplished by a licensed electrician when required by the authority having jurisdiction

Objective(s):
Ensure proper installation

Best Practice
All homes should have a carbon monoxide detector installed, whether hardwired or battery operated

Best Practice
Alarms should be mounted in sleeping areas—such as the one marked in red

Tools:
1. Hammer

Materials:
1. Nails
Mount alarm to wall close to bedrooms

Plug alarm into outlet. In addition, cord can be stapled into place

2.0301.2b - CO detection and warning equipment (battery operated)

Desired Outcome:
Properly installed CO alarms or monitors

Specification(s):
Battery-operated CO detection or warning equipment will be installed in accordance with the ASHRAE 62.2 and manufacturer specifications as required by the authority having jurisdiction

Objective(s):
Ensure proper installation

Houses should have carbon monoxide monitors installed near sleeping areas

Battery operated CO alarms should be UL-2075 or UL-2034 compliant
2.0403.4 - Pier and Skirting Foundations—Ground Moisture Barriers

Desired Outcome:
Durable, effective ground moisture barrier that provides ongoing access and minimizes ground vapor

2.0403.4a - Coverage

Desired Outcome:
Durable, effective ground moisture barrier that provides ongoing access and minimizes ground vapor

Specification(s):
If existing conditions of the ground and skirting mandates, a moisture barrier that covers the crawl space ground will be installed with allowances for structural supports (piers) and accessibility

Objective(s):
Reduce ground moisture entering crawl space

Tools:
1. Utility knife
2. Hammer or mallet
3. Scissors

Materials:
1. Polyethylene vapor barrier, 6-mil thickness or greater
2. Waterproof tape
3. Polyurethane caulking or construction adhesive
4. Landscape staples

Manufactured home crawlspace with incomplete ground vapor barrier

Manufactured home crawlspace with complete ground vapor barrier
Aim for complete coverage. If access to the entire crawlspace is impossible, cover all accessible areas. Overlap seams in vapor barrier by at least twelve inches, and seal them with waterproof tape and/or polyurethane caulk or adhesive. Wrap and cover support piers at least twelve inches high.

Remove skirting as needed for access to crawlspace

Measure, cut, and spread vapor barrier material after removing debris over 1/2" in size. Notch around obstructions

Wrap piers and columns at least six inches high. Use additional material to cover any gaps and holes in vapor barrier

Secure vapor barrier to ground with corrosion-resistant landscape staples, or weigh it down with ballast

Remove tools and excess material

Reinstall skirting

2.0403.4b - Material specification

Desired Outcome:
Durable, effective ground moisture barrier that provides ongoing access and minimizes ground vapor

Specification(s):
A ground moisture barrier with a rating of no more than 0.1 perm will be used

A ground moisture barrier will be used that meets tear and puncture resistance standard ASTM E1745
Homeowner will be advised that all plastic is biodegradable and will have a life span much shorter than the home (5 years), and it will need replacing to remain effective.

Objective(s):
Ensure crawl space is accessible for service and maintenance without damaging the integrity of the ground moisture barrier.

Best Practice
Barrier must be at least 6 mil, able to withstand puncture and last 5 yrs.

Best Practice
Talk to occupant about expected life of ground barrier and eventual need for replacement.

Materials:
1. Plastic sheeting (at least 6 mil)
2. Furring strips
3. Fasteners

The higher a material's perm rating, the more vapor can pass through said material. Drywall typically has a perm rating of approximately 50. For vapor retarders in basements and crawl spaces, SWS calls for materials with a perm rating of <0.1 (which translates to 6 mil or thicker). From 2007 IRC definition of vapor retarders: Class I: ≤ 0.1 perm (called impermeable), Class II: 0.1 to 1.0 perm (called semi-impermeable), Class III: 1.0 perm to 10 perms (called semi-permeable).

2.0403.4c - Overlap seams

Desired Outcome:
Durable, effective ground moisture barrier that provides ongoing access and minimizes ground vapor.

Specification(s):
When seams exist, they will be overlapped a minimum of 12" using reverse or upslope lapping technique.
Objective(s):
Keep water under the liner
Reduce likelihood of damage at seams

In Progress
Layer moisture barrier in a reverse shingle pattern so that uphill sheeting lays under downhill sheeting.

Best Practice
Once layered, secure seams with landscape staples or tape.

Tools:
1. Stapler
2. Utility knife
3. Drill

Materials:
1. Landscaping staples
2. Plastic sheeting (at least 6 mil)
3. Ballast
4. Furring strips
5. Moisture-resistant adhesive tape

Two different colors of poly used to highlight different layers.

Determine which direction ground slopes and, if not working from uphill down, fold back barrier at lower areas.

Measure uphill barrier at least 12 inches and mark where downhill barrier should reach.

Layer downhill barrier over uphill to marked position, overlapping 12 inches, in reverse shingle pattern.
Fasten seam with tape or landscape staples to prevent barrier from moving and allowing moisture infiltration

2.0403.4d - Fastening

Desired Outcome:
Durable, effective ground moisture barrier that provides ongoing access and minimizes ground vapor

Specification(s):
Ground moisture barrier may be fastened to ground with durable fasteners

Objective(s):
Prevent movement of the ground moisture barrier

Best Practice
Taping seams with waterproof adhesive tape can prevent barrier from moving

Best Practice
Fasten moisture barrier in place using ballast or corrosion-resistant fasteners, such as landscaping staples
Tools:
1. Hammer

Materials:
1. Landscaping staples
2. Ballast
3. Water-resistant adhesive tape
Desired Outcome:
A dry and moisture controlled space ensured

2.0404.2a - Close vents

Desired Outcome:
A dry and moisture controlled space ensured

Specification(s):
Vents and other openings will be closed after ensuring sufficient combustion air for fuel burning appliances in accordance with IRC

Objective(s):
Reduce moisture load coming from outside of the crawl space

IRC 2407 requires 50 cubic feet of volume in spaces where combustion appliances are located for every 1,000 Btuh of input. Ensure this requirement is met before closing off crawlspace vents.
Close vents to reduce moisture load from outdoor air

2.0404.2b - Drying

Desired Outcome:
A dry and moisture controlled space ensured

Specification(s):
If liquid moisture is present, the area will be dried until any liquid moisture is eliminated

Objective(s):
Reduce moisture in the crawl space

Improve work environment

Tools:
1. Wet/dry vacuum
2. Fan

Materials:
1. Mops
2. Towels
Desired Outcome:
A dry and moisture controlled space ensured

Specification(s):
Space will be dehumidified until wood moisture content in solid, untreated lumber is less than 20%

Objective(s):
Reduce moisture content of wood

Tools:
1. Moisture meter
2. Dehumidifier

After correcting drainage and bulk moisture issues, use portable dehumidifiers to dry the space.

Space has been dehumidified until moisture content in untreated lumber is less than 20%
2.0501.2 - Pier and Skirting Foundation—Venting

Desired Outcome:
Pollutants are effectively vented

2.0501.2a - Venting

Desired Outcome:
Pollutants are effectively vented

Specification(s):
Pier and skirting foundations will be vented in accordance with local climate conditions or code as required

Objective(s):
Provide ventilation for pollutant sources (e.g., moisture, radon, soil gases)

Tools:
1. Snips
2. Circular saw with fine-toothed paneling or vinyl siding blade (reversing the blade may help reduce chipping)
3. Mallet
4. Screw gun

Materials:
1. Skirting panels
2. Top rails, front and back
3. Ground channels and 7-inch spikes
4. Screw
2.0501.2b - Occupant education

Desired Outcome:
Pollutants are effectively vented

Specification(s):
Occupants will be educated on purpose, operation, and maintenance of vents

Objective(s):
Ensure vents function as intended

Teach homeowners how and when to operate foundation vents

Instruct homeowners that vents are intended to provide a path to outdoors for pollutants and soil moisture. Ideal settings for vents may be climate-dependents, but typically vents may be closed throughout the fall and winter when the air is relatively dry to conserve heat. They can be reopened when warmer weather begins in spring.

Close vents in fall or winter when heating season starts

Open foundation vents in spring time when weather warms
2.0602.1 - Static Electric Shock

Desired Outcome:
Prevention of static electric shock to the insulation installer when using rigid tubing

2.0602.1a - Rigid fill tube

Desired Outcome:
Prevention of static electric shock to the insulation installer when using rigid tubing

Specification(s):
Rigid fill tubes will be made of a material that will not hold an electric charge, such as Schedule 40 PVC Electrical Conduit, or be grounded

Objective(s):
Prevent injury to the installer

Best Practice
Rigid fill tubes should be low-conductivity and be grounded

Tools:
1. Wrench

Materials:
1. Couplers
2. Schedule 40 PVC fill tube
3. Grounding wire
4. Grounding rod
Select rigid fill tubes that are low conductivity -- Schedule 40 PVC fill tube

Attach grounding wire to fill tubes to minimize shock risk

Attach grounding wire to rod with coupler

Blow insulation

2.0602.1b - Metal coupler grounding

Desired Outcome:
Prevention of static electric shock to the insulation installer when using rigid tubing

Specification(s):
For an additional level of protection, the metal coupler on the hose will be connected to the grounding wire

Grounding wire will be connected to the grounding rod

Grounding rod will be driven into the ground a minimum of 8' when possible; grounding wire will be connected in compliance with local code and authority having jurisdiction

Objective(s):
Divert static discharge of electricity to ground instead of installer
Unsafe

Ungrounded fill tubes can build up static electricity during insulation blowing.

Best Practice

Fill tubes should be grounded to prevent electric shock to workers.

Tools:
1. Sledgehammer
2. Wrench

Materials:
1. Grounding rod, at least 8'
2. Grounding wire
3. Metal coupler
4. Grounding coupler

1. Copper grounding rod should be at least 8' long
2. Grounding rod should be driven into the ground so that nearly all of rod is underground
3. Attach grounding wire to rod with coupler
4. Attach grounding wire to fill tube
5. Blow in insulation with peace of mind
that workers will not be electrocuted
2.0602.2 - House Current Electric Hazard

Desired Outcome:
Prevention of injury to the installer and occupant, and prevent damage to the structure, if required by authority having jurisdiction

Note:
The authority having jurisdiction may require that a licensed professional perform certain tasks outlined in this detail.

2.0602.2a - Metal skin and frame grounding

Desired Outcome:
Prevention of injury to the installer and occupant, and prevent damage to the structure, if required by authority having jurisdiction

Specification(s):
Metal skin and frame will be grounded through the panel box to avoid electrical shock

Objective(s):
Prevent injury to the installer

Locate 6- or 8-gauge solid copper ground wire in panel box

Verify that the ground wire is attached to the chassis (and metal siding if so equipped)

Tools:
1. Flashlight
2. Screwdriver (to remove panel box cover)

The frame and metal siding ground wire attachment points can be found under the home below the
electric service entrance and panel box.

2.0602.2b - Metal fill tube grounding

Desired Outcome:
Prevention of injury to the installer and occupant, and prevent damage to the structure, if required by authority having jurisdiction

Specification(s):
For an additional level of protection, metal fill tube will be connected to the grounding wire

Grounding wire will be connected to the copper grounding rod that is driven into the ground a minimum of 8' when possible and required by code or authority having jurisdiction

Objective(s):
Divert house electric current to ground instead of installer in the event of contact with a live wire

Tools:
1. Sledgehammer
2. Wrench

Materials:
1. Grounding rod, at least 8'
2. Grounding wire
3. Metal coupler
4. Metal fill tube

Best Practice
To prevent static electric shock, a grounding rod should be utilized

Best Practice
Attach grounding wire to metal of fill tube, not to flexible tubing
A copper grounding rod should be submerged at least 8 feet underground.

Attach grounding wire to grounding rod with acorn coupler.

Attach grounding wire to metal fill tube with metal coupler.

Proceed with blowing insulation without fear of static shock.

2.0602.2c - Electrical tool safety

Desired Outcome:
Prevention of injury to the installer and occupant, and prevent damage to the structure, if required by authority having jurisdiction.

Specification(s):
An electrical safety assessment will be performed.

All electric tools will be protected by ground-fault circuit interrupters (GFCI).

Three-wire type extension cords will be used with portable electric tools.

Worn or frayed electric cords will not be used.

Water sources (e.g., condensate pans) and electrical sources will be kept separate.

Metal ladders will be avoided.
Aluminum foil products will be kept away from live wires

For arc flash hazards, NFPA 70E will be consulted

Objective(s):
Avoid electrical shock and arc flash hazards

Unsafe
Inspect house for unsafe electrical situations

Best Practice
Attics and crawl spaces should be inspected closely for electrical safety before work begins

Unsafe
Use GFCIs and three-wire extension cords for all power tools

Best Practice
Electrical wiring should not be located near a water source

Best Practice
Use fiberglass ladders in place of metal
Follow NFPA 70E 2012 guidelines for arc flash hazards

2.0602.2d - Aluminum wiring

Desired Outcome:
Prevention of injury to the installer and occupant, and prevent damage to the structure, if required by authority having jurisdiction

Specification(s):
If aluminum wiring is present, work on the home will be stopped until the suspect wiring is inspected and determined to be safe by a licensed electrician

After energy retrofit is completed, wiring will be reinspected by a licensed electrician

Objective(s):
Prevent injury to installer and occupant
Prevent damage to structure
Unsafe

Have a certified electrician perform a load test before any weatherization work if aluminum wire is present.

Safe

This panel does not contain aluminum wire.

Tools:

1. Screwdriver (to remove panel cover)
2. Flashlight

Check for the presence of aluminum wire (identified by its light gray color). If aluminum wire is present, do not work on the home until a certified electrician has performed a thorough inspection and determined that the wiring is safe.

Inspect panel box for presence of (silver or gray colored) aluminum wire

Have a certified electrician inspect every aluminum wire connection in the home

After electrician verifies wiring is safe, proceed with retrofit work
Perform retrofit measures

When retrofit is complete, have certified electrician re-check wiring for safety
3.1001.4 - General Penetrations (Electrical, HVAC, Plumbing, Vent Termination, Recessed Lighting)

Desired Outcome:
Penetrations sealed to prevent air leakage and moisture movement between unconditioned and conditioned space

Note:

3.1001.4a - Work assessment

Desired Outcome:
Penetrations sealed to prevent air leakage and moisture movement between unconditioned and conditioned space

Specification(s):
Installer prework assessment will be conducted to determine:

- Structural integrity
- Roof leaks
- Insect infestation
- Accessibility
- Number, type, size, and location of penetrations

Objective(s):
Ensure work space is safe and ready for air sealing
Verify scope of work

3.1001.4b - Air sealing penetrations

Desired Outcome:
Penetrations sealed to prevent air leakage and moisture movement between unconditioned and conditioned space

Specification(s):
Backing or infill will be provided as needed to meet the specific characteristics of the selected material and the characteristics of the penetration or hole
The infill or backing will not bend, sag, or move once installed

All accessible damaged vapor barrier will be repaired

Penetration through the air barrier will be repaired

Objective(s):

Ensure closure is permanent and supports any load (e.g., wind, insulation, mechanical pressures)

Ensure sealant is effective and durable

Tools:

1. Headlamp
2. Caulk gun

Materials:

1. Backer rod
2. Sealant
3. Adhesive tape
4. Plastic sheeting (at least 4 mil)

Before

Gaps around floor penetrations, such as plumbing, HVAC, and electrical

After

Gaps should be sealed to maintain air barrier

Prepare work space by removing any insulation

Infill with backer rod

Apply appropriate caulking to ensure backing/infill does not move
3.1001.4c - Sealant selection

Desired Outcome:
Penetrations sealed to prevent air leakage and moisture movement between unconditioned and conditioned space

Specification(s):
Sealants will be used to fill holes no larger than recommended by manufacturer specifications

Sealants will be compatible with all adjoining surfaces

Sealants will be continuous and meet fire barrier specifications, according to authority having jurisdiction

Objective(s):
Create a permanent seal

Ensure sealant meets or exceeds the performance characteristics of the surrounding materials
Create a continuous seal

Bad Practice
Avoid sealants that do not allow for expansion between dissimilar materials

Best Practice
Flexible sealants compensate for differential expansion and maintain a seal

Tools:
1. Caulk gun
2. Spray foam gun

Materials:
1. Caulk
2. Spray foam

Caulking can be used to span gaps up to 1/4 inch
Spray foam can be used to span gaps up to 3 inches
Check manufacturer specifications to verify spanning capabilities

Also check manufacturer specs for incompatibility with intended surfaces
3.1001.4d - Ceiling hole repair

Desired Outcome:
Penetrations sealed to prevent air leakage and moisture movement between unconditioned and conditioned space

Specification(s):
Ceiling repair material must meet or exceed strength of existing ceiling material

Ceiling repair must span from truss to truss or add blocking as needed for support

The backing or infill will not bend, sag, or move once installed

All accessible damaged vapor barriers will be repaired

Penetrations through the air barrier must be repaired

Objective(s):
Ensure ceiling is structurally sound

Minimize air leakage

Ensure closure is permanent and supports expected wind and mechanical pressure loads

Ensure sealant does not fall out

Before
Hole in drywall ceiling

In Progress
Drywall patch in place
Tools:
1. 6-inch and 12-inch drywall taping knives
2. Sanding block or sanding sponge
3. Utility knife
4. Keyhole saw
5. Screw gun

Materials:
1. Drywall or paneling
2. Fiberglass joint tape
3. Joint compound
4. Drywall screws
5. Support material if needed (typically 1X4, 1X6, or 2X4 dimensional lumber)

For holes in paneled ceilings, use matching panels for repairs. Consider replacing entire sections to avoid creating unsightly mismatched patches. For small holes, enlarge to a rectangular shape and install 1 X 4 blocks above two edges of the hole. For larger holes, enlarge opening to centers of nearest trusses and fasten the patch to the framing.

Replace any missing insulation and repair holes in vapor barrier
Prepare the hole by cutting the edges clean and square
Cut drywall and fasten in place
Add joint tape and first coat of joint compound

Desired Outcome:
Penetrations sealed to prevent air leakage and moisture movement between unconditioned and conditioned space
Specification(s):
Materials will be used or installed in accordance with product manufacturer specifications

Objective(s):
Select materials to ensure durable and permanent repair

Best Practice
Choose durable, high quality sealants that are compatible with existing materials

Tools:
1. Caulking gun
2. Reusable spray foam gun
3. Utility knife

Materials:
1. Caulk
2. Foam sealant
3. Foam board
4. Drywall
5. Joint compound

3.1001.4f - High temperature application

Desired Outcome:
Penetrations sealed to prevent air leakage and moisture movement between unconditioned and conditioned space

Specification(s):
Only noncombustible materials will be used in contact with chimneys, vents, and flues

Local codes will be referenced

Objective(s):
Prevent a fire hazard
Gaps around combustion exhaust flues need to be sealed.

Tools:
1. Drill/screwdriver
2. Caulk gun
3. Metal snips

Materials:
1. Fire caulk
2. Non-combustible material such as aluminum or galvanized steel flashing or cement board
3. Appropriate fasteners

Prepare work area by removing any insulation and debris.

Use high-temperature caulking (600°F min).

Apply first ring of caulking to match shape of opening.
Apply second ring of caulking to size and shape of rigid material

Fasten rigid material and apply additional caulking

Fasten rigid material to cover penetration and seal against flue with caulk
3.1101.1 - Exterior Holes and Penetrations

Desired Outcome:
Penetrations sealed to minimize air leakage and moisture movement between unconditioned and conditioned space; all repairs will maintain structural integrity

3.1101.1a - Work assessment

Desired Outcome:
Penetrations sealed to minimize air leakage and moisture movement between unconditioned and conditioned space; all repairs will maintain structural integrity

Specification(s):
Installer prework assessment will be conducted to determine:

- Structural integrity
- Size of wall stud
- Insect infestation
- Accessibility
- Number, type, size, and location of penetrations

Objective(s):
Ensure work space is safe and ready for air sealing
Verify scope of work

3.1101.1b - Materials

Desired Outcome:
Penetrations sealed to minimize air leakage and moisture movement between unconditioned and conditioned space; all repairs will maintain structural integrity

Specification(s):
Like material and/or compatible materials will be used for repairs
Materials will be selected to comply with manufactured housing rules and regulations (e.g., Manufactured Housing Institute)

Objective(s):
Select materials to ensure durable and permanent repair

Tools:
1. Sheet metal nibbler
2. Power saw
3. Snips
4. Screw gun
5. Caulking gun

Materials:
1. Aluminum siding or flashing
2. Oriented Strand Board (OSB) sheathing
3. Vinyl siding
4. Galvanized steel
5. Corrosion-resistant fasteners
6. High quality caulk formulated for exterior use

Replace damaged siding
Use siding that matches the existing material's contour, texture, and color

3.1101.1c - Exterior wall air sealing

Desired Outcome:
Penetrations sealed to minimize air leakage and moisture movement between unconditioned and conditioned space; all repairs will maintain structural integrity
Specification(s):
All holes and penetrations on exterior surface of exterior walls will be sealed to ensure resistance to outdoor elements

Intentionally ventilated walls will not be sealed at vent locations (e.g., weep holes)

All holes and penetrations on the interior surface of exterior walls will be repaired

Backing or infill will be provided as needed to meet the specific characteristics of the selected sealant and the characteristics of the penetration

Objective(s):
Minimize air leakage

Maintain durability

Ensure resulting closure is permanent and supports expected load

Ensure sealant is effective and durable

Tools:
1. caulk gun

Materials:
1. weatherproof caulk
Seams on aluminum siding must be tight.

Through the wall exhaust fan sealing. Do not seal intentionally ventilated wall assemblies!

Backimg or infill substrate may be needed for some wall patches.

Exterior electrical outlet sealing.
3.1101.2 - Interior Holes and Penetrations

Desired Outcome:
Penetrations sealed to minimize air leakage and moisture movement between unconditioned and conditioned space; all repairs will maintain structural integrity

3.1101.2a - Work assessment

Desired Outcome:
Penetrations sealed to minimize air leakage and moisture movement between unconditioned and conditioned space; all repairs will maintain structural integrity

Specification(s):
Installer prework assessment will be conducted to determine:

- Structural integrity
- Size of wall stud
- Insect infestation
- Accessibility
- Number, type, size, and location of penetrations

Objective(s):
Ensure work space is safe and ready for air sealing
Verify scope of work

3.1101.2b - Interior wall air sealing

Desired Outcome:
Penetrations sealed to minimize air leakage and moisture movement between unconditioned and conditioned space; all repairs will maintain structural integrity

Specification(s):
All accessible holes and penetrations in top and bottom plates will be sealed

Backing or infill will be provided as needed to meet the specific characteristics of the selected sealant and the characteristics of the penetration

Objective(s):
Minimize air leakage

Maintain durability

Ensure resulting closure is permanent and supports expected wind and mechanical pressure loads

Ensure sealant is effective and durable

Tools:
1. Caulking gun
2. Reusable spray foam gun

Materials:
1. Caulk
2. Spray polyurethane foam
3. Foam backer rod or pieces of fiberglass batt

Locate and expose penetrations to prepare for sealant
Use caulk or foam (approved by local code) to seal wiring penetrations through top plate
Ensure that all accessible gaps, holes, and penetrations are filled
3.1101.2c - Materials

Desired Outcome:
Penetrations sealed to minimize air leakage and moisture movement between unconditioned and conditioned space; all repairs will maintain structural integrity

Specification(s):
Like material and/or compatible materials will be used for repairs

Materials will be selected to comply with manufactured housing rules and regulations (e.g., Manufactured Housing Institute)

Objective(s):
Select materials to ensure durable and permanent repair

Tools:
1. Utility knife
2. Drill
3. Saw
4. Tape measure
5. Taping knife

Materials:
1. Drywall
2. Panelling
3. Fasteners
4. Wood for support
5. Spackle
3.1101.3 - Holes, Penetrations, and Marriage Line

Desired Outcome:
Penetrations sealed to minimize air leakage and moisture movement between unconditioned and conditioned space; all repairs to maintain structural integrity

3.1101.3a - Work assessment

Desired Outcome:
Penetrations sealed to minimize air leakage and moisture movement between unconditioned and conditioned space; all repairs to maintain structural integrity

Specification(s):
Installer prework assessment will be conducted to determine:

- Structural integrity
- Insect infestation
- Accessibility
- Number, type, size, and location of penetrations
- Identify marriage walls and lines

Objective(s):
Ensure work space is safe and ready for air sealing
Verify scope of work

3.1101.3b - Marriage wall air sealing of holes and penetrations

Desired Outcome:
Penetrations sealed to minimize air leakage and moisture movement between unconditioned and conditioned space; all repairs to maintain structural integrity

Specification(s):
All accessible holes and penetrations in top and bottom plates will be sealed

Backing or infill will be provided as needed to meet the specific characteristics of the selected sealant and the characteristics of the penetration

Objective(s):
Minimize air leakage

Maintain durability

Ensure resulting closure is permanent and supports expected wind and mechanical pressure loads

Ensure sealant is effective and durable

Cobwebs may indicate air leaks at the marriage line

Completed air sealing at marriage line

Tools:
1. Caulking gun
2. Reusable spray foam gun

Materials:
1. Extruded polystyrene (XPS) foam board
2. Caulk
3. Spray foam
4. Foam backer rod or fiberglass batt insulation

Clean belly wrap before air sealing

Stuff wide gaps in the marriage line with fiberglass insulation or foam backer rod before applying sealant

Apply foam or caulking over backer
3.1101.3c - Marriage line air sealing

Desired Outcome:
Penetrations sealed to minimize air leakage and moisture movement between unconditioned and conditioned space; all repairs to maintain structural integrity

Specification(s):
All accessible holes and penetrations at marriage lines will be sealed continuously at end walls, floors, and ceiling

Backining or infill will be provided at the marriage line as needed

All remaining gaps will be sealed with an approved material

Objective(s):
Minimize air leakage

Maintain durability

Ensure sealant is effective and durable

Tools:
1. Reusable spray foam gun
2. Caulking gun
3. Utility knife
4. Tape measure
5. Square
6. Screw gun
7. Hammer
8. Prybar
9. Blower door
10. Chemical smoke dispenser

Materials:
1. Caulk
2. Spray foam
3. Foam board
4. Screws
You may need to remove trim to determine what type of sealing is needed at the marriage line. Some original installations use a compressed open-cell polyurethane foam sealing strip with excellent air sealing properties and will need little or no additional work. Other installations may feature fiberglass or other ineffective air sealing measures and require extensive caulking and foaming to reduce air infiltration. Use a blower door to pressurize the house and use smoke to pinpoint leak locations.

Identify leaks in marriage line using a blower door and smoke

Foam, caulk, and seal leaks between halves of double wide manufactured homes

3.1101.3d - Materials

Desired Outcome:
Penetrations sealed to minimize air leakage and moisture movement between unconditioned and conditioned space; all repairs to maintain structural integrity

Specification(s):
Materials will be used or installed in accordance with product manufacturer specifications

Objective(s):
Select materials to ensure durable and permanent repair

Before
Hole in exterior wall of manufactured home aluminum siding

After
Completed wall patch
Tools:
1. Sheet metal nibbler
2. Snips
3. Screw gun
4. Caulking gun

Materials:
1. Aluminum siding or flashing
2. Caulk (formulated for exterior use)
3. Corrosion-resistant fasteners
3.1201.5 - Manufactured Housing Windows and Doors

Desired Outcome:
Windows and doors are operable, sealed, and weathertight

Note:

3.1201.5a - Work assessment

Desired Outcome:
Windows and doors are operable, sealed, and weathertight

Specification(s):
Installer prework assessment will be conducted to determine:

- Number
- Type
- Operating condition
- Wall construction

Objective(s):
Ensure work space is safe and ready for air sealing
Verify scope of work

3.1201.5b - Lead paint assessment

Desired Outcome:
Windows and doors are operable, sealed, and weathertight

Specification(s):
Presence of lead-based paint in pre-1978 homes will be assumed unless testing confirms otherwise; documentation of testing results will be kept on file

EPA's Renovation, Repair and Painting (RRP) Program Rule (40 CFR Part 745) in pre-1978 homes and proposed changes to this rule (Federal Register/Vol. 75, No. 87/May 6, 2010) will be complied with, to be superseded by any subsequent final rulemaking or any more stringent state or federal standards

Objective(s):
Protect worker and occupant from potential lead hazards

Best Practice

In homes built before 1978, test paint before beginning renovation

Tools:

1. Note: Mask must be worn during testing
2. LeadCheck test kit
3. Utility knife
4. Camera

EPA RRP certification required to conduct Lead Paint assessment.

1. Clean tools and sample site to prevent contamination
2. Cut sample site at an angle to expose all older paint layers
3. Break capsules and shake to mix reagents. Swab sample site for 30 seconds
Check swab for reaction

Red indicates lead positive. White is lead negative

If negative, verify validity of test with provided calibration card

Lead in calibration card should test positive and turn red

Record test results to maintain documentation

3.1201.5c - Operable windows and doors

Desired Outcome:
Windows and doors are operable, sealed, and weathertight

Specification(s):
All egress windows will be operable as required by local codes

All egress doors will be operable as required by local codes

Objective(s):
Maintain operability of egress windows and doors
Safe

Windows and doors should be free and clear of obstructions and operate smoothly with no special knowledge.

Window sill height should be no more than 44 inches from the floor.

Egress windows should be more than 24" high.

Egress windows should be more than 20" wide.

Doors should open easily from the inside, with no key or special knowledge of the locking system.

Manufactured housing should have two egress doors located away from one another. Stairs or ramps may be needed outside.
3.1201.5d - Air infiltration

Desired Outcome:
Windows and doors are operable, sealed, and weathertight

Specification(s):
Details that reduce air infiltration will be repaired, replaced, sealed, or installed (e.g., plastic gliders, weatherstripping, cranks, latches, locks, knobs, thresholds)

Objective(s):
Reduce air infiltration

Tools:
1. Drill/screwdriver
2. Utility knife
3. Tape measure
4. Caulk gun
5. Metal snips

Materials:
1. Weatherstripping
2. Door sweep
3. Fasteners
4. Caulk
5. Felt corner pads

Light visible through door jamb indicates air infiltration

After weatherstripping and adjustment of door in jamb, air infiltration is eliminated
Door jamb is missing any weatherstripping
Measure door jamb for weatherstripping
Install new weatherstrip

Measure bottom of door for door sweep
Install new door sweep
Adjust strike-plate and door jambs as necessary to secure a good fit

If properly adjusted, light should no longer be visible around door and air movement should no longer be detected

3.1201.5e - Water infiltration

Desired Outcome:
Windows and doors are operable, sealed, and weathertight

Specification(s):
Details that reduce water infiltration will be repaired, replaced, or installed (e.g., replace missing glazing on sash, exterior caulking, exterior storm windows, storm doors, drip cap, J-channel, flashing)

Objective(s):
Reduce water infiltration
Install and caulk drip caps over manufactured home windows

Install and caulk drip caps over manufactured home doors

Tools:
1. Caulking gun
2. Cordless driver/drill
3. Razor scraper
4. Metal snips

Materials:
1. Caulk formulated for exterior use with 20-year or greater durability
2. Glass
3. Glazing strips
4. J-channel
5. Putty tape
6. Flashing

3.1201.5f - Materials

Desired Outcome:
Windows and doors are operable, sealed, and weathertight

Specification(s):
Materials will be used or installed in accordance with product manufacturer specifications

Objective(s):
Select materials to ensure durable and permanent repair
3.1201.5g - Quality assurance

Desired Outcome:
Windows and doors are operable, sealed, and weathertight

Specification(s):
Windows and doors will be adjusted to properly fit the jamb and allow for ease of operation and security

Objective(s):
Ensure proper operation of the window, door, and hardware
Ensure air and watertight installation

3.1201.5h - Occupant education and maintenance

Desired Outcome:
Windows and doors are operable, sealed, and weathertight

Specification(s):
Occupants will be notified of changes or repairs made and will be educated on how to operate and maintain windows and doors

Objective(s):
Ensure long-term weathertightness
3.1201.6 - Interior Storm Windows

Desired Outcome:
Minimize air infiltration through existing leaky windows while maintaining safe egress for occupants

Note:

3.1201.6a - Work assessment

Desired Outcome:
Minimize air infiltration through existing leaky windows while maintaining safe egress for occupants

Specification(s):
Installer prework assessment will be conducted to determine:

- Number
- Type
- Size
- Condition of opening

Objective(s):
Verify scope of work

3.1201.6b - Fixed storm window

Desired Outcome:
Minimize air infiltration through existing leaky windows while maintaining safe egress for occupants

Specification(s):
Fixed interior storm windows will not be installed in egress locations

Objective(s):
Safety
Unsafe
Do not install fixed storm windows in bedroom windows designated as egress locations

Safe
Fixed storm windows may be installed in non-egress locations only

Storm windows installed in egress (bedroom) windows must be operable or removable, and conform to the following standard: Voluntary Standard Egress Window Systems for Utilization in Manufactured Housing, AAMA 1704-85

3.1201.6c - Installing operable storm window

Desired Outcome:
Minimize air infiltration through existing leaky windows while maintaining safe egress for occupants

Specification(s):
Operable interior storm windows will be installed in accordance with manufacturer specifications

Objective(s):
Minimize air leakage

Provide safe egress for occupants
Before

No interior storm window has been installed.

After

Storm window has been installed according to manufacturers specifications and operates smoothly.

Tools:

1. drill

Materials:

1. mechanical fasteners
2. weatherstripping

Ensure the perimeter surfaces are clean and ready to accept sealant.

Install weatherstrip or other appropriate sealant to the perimeter of the opening.

Install the window, ensuring it is level in the opening.

Secure the window to the opening, being sure the mechanical fasteners

Storm window has been installed according to manufacturers
compress the desired sealant. specifications and operates smoothly.

3.1201.6d - Health and safety

Desired Outcome:
Minimize air infiltration through existing leaky windows while maintaining safe egress for occupants

Specification(s):
Interior storm windows will be operable and egress rated in egress locations

Objective(s):
Provide safe egress for occupants

Only operable storm windows conforming to HUD standards may be installed in egress (bedroom) windows

Storm windows installed in egress (bedroom) windows must be operable or removable, and conform to the following standard: Voluntary Standard Egress Window Systems for Utilization in Manufactured Housing, AAMA 1704-85

3.1201.6e - Occupant education

Desired Outcome:
Minimize air infiltration through existing leaky windows while maintaining safe egress for occupants

Specification(s):
Occupants will be educated on the proper use and maintenance of storm windows
Objective(s):
Ensure weathertightness and safety
3.1202.3 - Replacing Damaged Window Glass in Manufactured Housing

Desired Outcome:
Glass complete and intact

Note:

3.1202.3a - Work assessment

Desired Outcome:
Glass complete and intact

Specification(s):
Installer prework assessment will be conducted to determine:

- Number
- Type
- Location
- Operating condition
- Wall construction
- Size

Objective(s):
Ensure that work space is safe and ready for glass replacement
Verify scope of work

3.1202.3b - Lead paint assessment

Desired Outcome:
Glass complete and intact

Specification(s):
Presence of lead-based paint in pre-1978 homes will be assumed unless testing confirms otherwise; documentation of testing results will be kept on file

EPA's Renovation, Repair and Painting (RRP) Program Rule (40 CFR Part 745) in pre-1978 homes and proposed changes to this rule (Federal Register/Vol. 75, No. 87/May 6, 2010) will be complied
with, to be superseded by any subsequent final rulemaking or any more stringent state or federal standards

Objective(s):
Protect worker and occupant from potential lead hazards

Best Practice
In homes built before 1978, test paint before beginning renovation

Tools:
1. Note: Mask must be worn during testing
2. LeadCheck test kit
3. Utility knife
4. Camera

EPA RRP certification required to conduct Lead Paint assessment.

Clean tools and sample site to prevent contamination
Cut sample site at an angle to expose all older paint layers
Break capsules and shake to mix reagents. Swab sample site for 30 seconds
Check swab for reaction
Red indicates lead positive. White is lead negative
If negative, verify validity of test with provided calibration card

Lead in calibration card should test positive and turn red
Record test results to maintain documentation

3.1202.3c - Broken glass removal

Desired Outcome:
Glass complete and intact

Specification(s):
Damaged glass will be removed

Objective(s):
Safely remove old glass
Broken or cracked window glass should be replaced to minimize air leakage.

Tools:

1. Brush
2. Dust pan
3. Vacuum
4. Utility knife
5. Gloves

Remove exterior stops—these will probably not be salvageable.

Wearing protective gloves, remove large glass pieces carefully.

Sweep up all remaining small glass slivers.

Sash should be completely clear of...
3.1202.3d - Opening preparation

Desired Outcome:
Glass complete and intact

Specification(s):
Opening will be cleaned

Original sealant/material will be removed

Objective(s):
Prepare opening for new glass

In Progress
Remove all debris, glazing tape, and glass from sash

In Progress
Sash surface must be clean before mounting new glass

Tools:
1. Scraper
2. Lint-free cloth

Materials:
1. Cleaning solution or cleaning wipes
3.1202.3e - New glass installation

Desired Outcome:
Glass complete and intact

Specification(s):
Replacement glass will be sized to original width, height, and depth

Stops will be replaced or installed

Glass will be sealed in accordance with original installation design

Glass will be selected with comparable tint and coating (color and look)

Tempered or safety glass will be used as required by local code

Objective(s):
Install, seal, and secure new glass in place
Sash should be completely clear debris before installing new glass

Replacement glass should match previous tint and dimensions, and be tempered, if location requires it

Tools:
1. Caulk gun
2. Tape measure

Materials:
1. New glass, measured to fit, tempered if necessary
2. Glazing or replacement stops
3. Adhesive sealant
4. Window cleaner

Measure sash for width of replacement glass -- cut glass to 1/4" less than sash width

Measure sash for height of replacement glass -- cut glass to 1/4" less than sash height

Apply sealant to sash with bead at least 3/16" wide
Run sealant bead around entire sash to seal glass from the interior.

Install new glass, ensuring 1/8” gap from frame on all sides.

Apply glazing or install replacement stops to seal window from exterior.

Clean glass to ensure no out of place adhesive or glazing remains to bake onto glass.
3.1203.3 - Replacement of Manufactured Housing Windows and Doors

Desired Outcome:
Smooth operation and an airtight and weathertight fit of replacement windows and doors

Note:

3.1203.3a - Work assessment

Desired Outcome:
Smooth operation and an airtight and weathertight fit of replacement windows and doors

Specification(s):
Installer prework assessment will be conducted to determine:

- Number
- Type
- Operating condition
- Wall construction

Objective(s):
Ensure work space is safe and ready for air sealing

Verify scope of work

3.1203.3b - Lead paint assessment

Desired Outcome:
Smooth operation and an airtight and weathertight fit of replacement windows and doors

Specification(s):
Presence of lead-based paint in pre-1978 homes will be assumed unless testing confirms otherwise; documentation of testing results will be kept on file

EPA's Renovation, Repair and Painting (RRP) Program Rule (40 CFR Part 745) in pre-1978 homes and proposed changes to this rule (Federal Register/Vol. 75, No. 87/May 6, 2010) will be complied with, to be superseded by any subsequent final rulemaking or any more stringent state or federal standards
Objective(s):
Protect worker and occupant from potential lead hazards

Best Practice
In homes built before 1978, test paint before beginning renovation

Tools:
1. Note: Mask must be worn during testing
2. LeadCheck test kit
3. Utility knife
4. Camera

EPA RRP certification required to conduct Lead Paint assessment.

Clean tools and sample site to prevent contamination
Cut sample site at an angle to expose all older paint layers
Break capsules and shake to mix reagents. Swab sample site for 30 seconds
3.1203.3c - Window or door selection

Desired Outcome:
Smooth operation and an airtight and weathertight fit of replacement windows and doors

Specification(s):
Window or door units will be designed for manufactured home use and will be ENERGY STAR qualified

Rough opening will be measured before ordering replacements

Access to emergency egress points, such as primary windows or exit doors, will be considered during the selection of retrofit window or door units

Objective(s):
Ensure proper size, type, and operation of window or door
3.1203.3d - Rough opening preparation

Desired Outcome:
Smooth operation and an airtight and weathertight fit of replacement windows and doors

Specification(s):
Existing units will be removed

Opening will be cleaned

Any damaged framing will be replaced

Opening for installation will be prepared in accordance with manufacturer specifications

Objective(s):
Provide a clean opening for replacement unit

3.1203.3e - Window and door installation

Desired Outcome:
Smooth operation and an airtight and weathertight fit of replacement windows and doors

Specification(s):
Window or door units will be installed in accordance with manufacturer specifications

Objective(s):
Ensure replacement window or door operates properly

Ensure replacement window or door has a weathertight fit

Best Practice
Window is installed per manufacturer's specifications and adheres to local codes.

Best Practice
Door is installed to manufacturer's specifications and adheres to local codes.
3.1203.3f - Safety

Desired Outcome:
Smooth operation and an airtight and weathertight fit of replacement windows and doors

Specification(s):
Egress windows will only be replaced with egress windows

Objective(s):
Provide safe egress for occupants
Windows installed in egress (bedroom) windows must conform to the following standard: Voluntary Standard Egress Window Systems for Utilization in Manufactured Housing, AAMA 1704-85

3.1203.3g - Maintenance and occupant education

Desired Outcome:
Smooth operation and an airtight and weathertight fit of replacement windows and doors

Specification(s):
Occupants will be notified of changes or repairs made and will be educated on how to operate and maintain window or door

Objective(s):
Ensure long-term weathertightness
3.1301.1 - Electrical, HVAC, Plumbing, Gas, Dryer Vent, and General Penetrations Through Bottom Board

Desired Outcome:
Penetrations sealed to minimize air leakage and moisture movement between unconditioned and conditioned space

Note:

3.1301.1a - Work assessment

Desired Outcome:
Penetrations sealed to minimize air leakage and moisture movement between unconditioned and conditioned space

Specification(s):
Installer prework assessment will be conducted to determine:

- Structural integrity
- Standing water
- Raw sewage
- Insect infestation
- Pests
- Accessibility
- Number, type, size, and location of penetrations

Objective(s):
Ensure work space is safe and ready for air sealing

Verify scope of work

3.1301.1b - Soft bottom board repair

Desired Outcome:
Penetrations sealed to minimize air leakage and moisture movement between unconditioned and conditioned space

Specification(s):
Patching material will be provided as needed to meet the specific characteristics of the bottom
board material and the characteristics of the hole

Patch will have a service life of a minimum of 20 years

Objective(s):
Minimize air leakage

Keep insulation in place

Ensure repair materials are compatible

Ensure patch will support insulation

3.1301.1c - Hard bottom board repair

Desired Outcome:
Penetrations sealed to minimize air leakage and moisture movement between unconditioned and conditioned space

Specification(s):
Patching will be provided as needed to meet both the specific characteristics of the bottom board material and the characteristics of the hole

Patch will not bend, sag, or move once installed

Patch will be permanent

Objective(s):
Minimize air leakage

Ensure repair materials are compatible

Minimize hole size to ensure successful use of sealant

Ensure closure is permanent and supports insulation

Ensure sealant does not fall out

3.1301.1d - Bottom board penetrations

Desired Outcome:
Penetrations sealed to minimize air leakage and moisture movement between unconditioned and conditioned space

Specification(s):
Combustion air supplies will be labeled for identification and will not be blocked or sealed

Penetrations will be sealed to meet both the specific characteristics of the bottom board material and the characteristics (hole size and type) of the penetrations (e.g., electrical, PVC, gas line, dryer vent)

The patch will not bend, sag, or move once installed

Objective(s):
Ensure combustion equipment is not compromised

Minimize air leakage around penetrations

Tools:
1. Outward clinching (stitch) stapler
2. Utility knife
3. Cordless driver/drill
4. Reusable foam gun
5. Caulking gun
6. Nail gun

Materials:
1. Belly/bottom board fabric
2. Belly/bottom board repair tape
3. Staples
4. Screws
5. Foam board
6. 1X2 nailers
7. Spray foam sealant
8. High quality exterior caulk
3.1301.1e - Materials

Desired Outcome:
Penetrations sealed to minimize air leakage and moisture movement between unconditioned and conditioned space

Specification(s):
Materials will be selected to comply with manufactured housing rules and regulations (e.g., Manufactured Housing Institute)

Surface preparation and material selected will be used or installed in accordance with product manufacturer specifications

Objective(s):
Select materials to ensure durable and permanent repair
3.1301.2 - Electrical, HVAC, Plumbing, Gas, Dryer Vent, and General Penetrations Through Flooring

Desired Outcome:
Penetrations sealed to minimize air leakage and moisture movement between unconditioned and conditioned space; all repairs will maintain structural integrity

3.1301.2a - Work assessment

Desired Outcome:
Penetrations sealed to minimize air leakage and moisture movement between unconditioned and conditioned space; all repairs will maintain structural integrity

Specification(s):
Installer prework assessment will be conducted to determine:

- Structural integrity
- Insect infestation
- Pests
- Accessibility
- Plumbing leaks
- Number, type, size, and location of penetrations

Objective(s):
Ensure work space is safe and ready for air sealing

Verify scope of work

3.1301.2b - Floor air sealing (decking, subfloor, floor decking)

Desired Outcome:
Penetrations sealed to minimize air leakage and moisture movement between unconditioned and conditioned space; all repairs will maintain structural integrity

Specification(s):
Backing or infill will be provided as needed to meet the specific characteristics of the selected sealant and the characteristics of the penetration
The backing or infill will not bend, sag, or move once installed

Objective(s):
Ensure resulting closure is permanent and supports expected load

Ensure sealant is effective and durable

Tools:
1. Headlamp

Materials:
1. Backer rod
2. Sealant

Gaps around floor penetrations, such as plumbing, HVAC, and electrical

Gaps should be sealed to maintain air barrier

Prepare work space by removing any insulation

Infill with backer rod

Apply appropriate caulking to ensure backing/infill does not move
3.1301.2c - Sealant selection

Desired Outcome:
Penetrations sealed to minimize air leakage and moisture movement between unconditioned and conditioned space; all repairs will maintain structural integrity

Specification(s):
- Sealants will be used to fill holes no larger than recommended by manufacturer specifications
- Sealants will be compatible with all adjoining surfaces
- Sealants will be continuous and meet fire barrier specifications, if required

Objective(s):
- Ensure sealant meets or exceeds the performance characteristics of the surrounding materials

Bad Practice
Avoid sealants that do not allow for expansion between dissimilar materials

Best Practice
Flexible sealants compensate for differential expansion and maintain a seal
Tools:
1. Caulk gun
2. Spray foam gun

Materials:
1. Caulk
2. Spray foam

Caulking can be used to span gaps up to 1/4 inch.
Spray foam can be used to span gaps up to 3 inches.
Check manufacturer specifications to verify spanning capabilities.

Also check manufacturer specs for incompatibility with intended surfaces.

3.1301.2d - Floor repair

Desired Outcome:
Penetrations sealed to minimize air leakage and moisture movement between unconditioned and conditioned space; all repairs will maintain structural integrity.

Specification(s):
Floor repair material will meet or exceed strength of existing floor material.
Repair will span from joist to joist and blocking added as needed to support floor.
Patches smaller than 144 square inches will not require repairs from joist to joist.
Floor repair material will be glued, fastened, and air sealed

Objective(s):
Ensure floor is structurally sound
Minimize air leakage

Tools:
1. Circular saw
2. Reciprocating saw
3. Caulking gun
4. Cordless driver/drill
5. Framing square
6. Speed square
7. Utility knife
8. Sawhorses
9. Clamps
10. Jig saw or keyhole saw
11. Paddle bits to drill starter holes in floor

Materials:
1. 5/8" or 3/4" oriented strand board or plywood subflooring
2. Polyurethane caulk
3. Construction adhesive
4. 2" deck screws
5. 3" deck screws
6. 8-penny galvanized ring shank or spiral shank nails
7. 16-penny galvanized ring shank or spiral shank nails
8. 2X4, or 2X6 blocking material for nailers
9. Air sealing foam (one- or two-part SPF)
10. Belly repair tape

Paddle bits may be used to drill starter holes at the corners of the area to be patched. Cut the new patch 1/4" shorter than the hole in both length and width to allow room for expansion and contraction. Make sure to cut the patch so that the strength axis is perpendicular to the joists (the strong direction in plywood and OSB is parallel to the 8' length).
Carefully remove trim and floor coverings from area to be repaired

Mark the joist locations on either side of the damaged area

Cut out damaged area even with the inside edges of the floor joists

Cut four 2X4 blocks to support the patch

Install nailers flat against the joists. Finish by toenailing or screwing 2X4s between the joists

Make the patch 1/4” smaller than the opening in length and width to allow for expansion.

Apply subfloor adhesive to nailers

Fasten with 2" deck screws

Desired Outcome:
Penetrations sealed to minimize air leakage and moisture movement between unconditioned and conditioned space; all repairs will maintain structural integrity

Specification(s):
Materials will be selected to comply with manufactured housing rules and regulations (e.g., Manufactured Housing Institute)

Materials will be used or installed in accordance with manufacturer specifications

Objective(s):
Select materials to ensure durable and permanent repair

![Image of materials](image)

Use materials with sufficient strength to span openings and support repair materials without bending or sagging

Tools:
1. Screw gun
2. Drill
3. Circular saw
4. Hammer or nail gun

Materials:
1. Typically 1X2, 1X4, 2X4, or 2X6 dimensional lumber. Steel angle may also be used to create sturdy repairs
2. Nails
3. Screws
4. Nuts, bolts, and washers
5. Staples

3.1301.2f - High temperature application

Desired Outcome:
Penetrations sealed to minimize air leakage and moisture movement between unconditioned and conditioned space; all repairs will maintain structural integrity

Specification(s):
Only noncombustible materials will be used in contact with chimneys, combustion exhaust vents, and flues
Objective(s):
Prevent a fire hazard

Before
Gaps around floor penetrations allow air and moisture movement

After
Use non-combustible materials, like 26-gauge steel and high-temp caulk

Tools:
1. Drill/screwdriver
2. Caulk gun
3. Metal snips

Materials:
1. High-temperature caulk
2. Non-combustible material such as aluminum or galvanized steel flashing or cement board

1. Prepare work area by removing any insulation and debris
2. Use high-temperature caulking (600°F min)
3. Apply first ring of caulking to match shape of opening
Apply second ring of caulking to size and shape of rigid material

Fasten rigid material and apply additional caulking

Fasten rigid material to cover penetration and seal against flue with caulk
3.1601.5 - Preparation and Mechanical Fastening

Desired Outcome:
Ducts and plenums properly fastened to prevent leakage

Note:

3.1601.5a - Preparation

Desired Outcome:
Ducts and plenums properly fastened to prevent leakage

Specification(s):
Surrounding insulation will be cleared to expose joints being sealed; salvage for reuse if possible

Duct surface to receive sealant will be cleaned

Objective(s):
Gain access while maintaining insulation value

Achieve proper adhesion for airtight seal when needed to ensure a tight fit to the framing structure and ensure the register can be removed and reinstalled by the dwelling occupant

Materials:
1. Cleaning solution or cleaning wipes
When making connections at interior walls, mastic should be applied to boot and wall, and allowed to dry entirely.

3.1601.5b - Metal to metal

Desired Outcome:
Ducts and plenums properly fastened to prevent leakage

Specification(s):
Ducts will be fastened with a minimum of three equally spaced screws

Objective(s):
Ensure durable joints

Tools:
1. Drill

Materials:
1. Fasteners

Before

Reconnect ducts that have come undone, using fasteners to strengthen connection

After

At minimum, use three fasteners evenly spaced
Realign and join ducts to create a smooth transition

Use fasteners to hold duct together and prevent future dislocation

Attach ducts using a minimum of three, evenly-spaced fasteners

3.1601.5c - Flex to metal

Desired Outcome:
Ducts and plenums properly fastened to prevent leakage

Specification(s):
Joints will be fastened with tie bands using a tie band tensioning tool

For oval flexible duct to metal connections, tie bands cannot be used; appropriate mechanical fastener will be used

All connections, regardless of fastener, will be sealed

Objective(s):
Ensure durable joints

Before
Disconnected ducts are useless and need to be reconnect and securely fastened

After
Flexible duct should be securely fastened to metal ducting to prevent future dislocation and minimize leakage
Tools:
1. Band tensioner
2. Brush

Materials:
1. Tie bands
2. Mastic or other appropriate sealant

Apply mastic to flange

Slide inner liner onto flange with sealant

Using band tensioner, securely attach liner in place with tie band

Slide insulation and outer casing over metal ducting

Extend insulation and casing until in contact with other insulation

Secure insulation and casing in place using tie band and band tensioner

3.1601.5d - Duct board to duct board

Desired Outcome:
Ducts and plenums properly fastened to prevent leakage

Specification(s):
Joints will be fastened with outward clinching (stitch) staples and c-channels if possible

Objective(s):
Ensure durable joints
3.1601.5e - Duct board to flexible duct

Desired Outcome:
Ducts and plenums properly fastened to prevent leakage

Specification(s):
Metal take-off collar specifically designed for the thickness of the duct board will be used

All finger tabs will be bent down securely

Finger tabs will be longer than the thickness of the duct board and the shank will not extend beyond the thickness of the duct board

There will be an internal metal backer inside the duct board through which three evenly spaced screws can be secured; the metal backer will not interfere with air flow

Objective(s):
Ensure durable joints

Prevent the collar from moving into or out of the duct board or slipping

Bad Practice
Flex duct improperly attached to duct board. No starting collar is installed.

Best Practice
Flex duct, starting collar, and backer ring installed and sealed to duct board

Tools:
1. Cordless driver/drill
2. 1/4" nut driver bit
3. Disposable brushes
4. Tin snips
5. Utility knife
6. Zip tie tensioning tool

Materials:
1. Galvanized metal backer rings
2. Tabbed starting collars
3. Rubber gloves
4. Zip ties
5. Duct sealing mastic
6. Fiberglass mesh tape
Make sure to use a starting collar that is made for the thickness of the duct board you are using. R-6 duct board is 1-1/2” thick. The correct starting collar would therefore have 1-1/2” of solid metal between the shoulder that fits against the outside of the duct board and the base of the tabs.

You may need to cut a slot in the duct board to slide the backer ring through. Use at least three equally spaced screws to fasten the starting collar to the backer ring.

1. Gather materials
2. Place backer ring inside duct board. Insert collar and bend tabs into place.
3. Fasten the collar to the backer ring by driving at least three equally spaced screws through the collar, duct board
4. Coat joint between starting collar and duct board with mastic. Liberally coat the metal collar where flex attaches
5. Slide flex duct liner over mastic-coated metal collar
7. Coat seam with mastic
8. Pull insulation over duct liner and secure with a zip tie.
3.1601.5f - Duct board plenum to air handler cabinet

Desired Outcome:
Ducts and plenums properly fastened to prevent leakage

Specification(s):
Flange/c-channel will be fastened with screws with the duct board installed between c-channel flanges

Duct board plenum will be connected to air handler plenum with flexible duct in upflow units

Objective(s):
Ensure durable joints

Best Practice
Duct board plenum fastened with C-channel and screws

Tools:
1. Screw gun
2. Tin snips
3. Utility knife
4. Tape measure
5. Square

Materials:
1. Fiberglass duct board
2. C-channel (same width as duct board)
3. Sheet metal screws longer than the duct board thickness
4. Foil tape (for assembling duct board)
5. Mastic
6. Mesh tape (for gaps larger than 1/4")
7. Flex duct
8. Zip ties
9. Starting collar
10. Backing ring (fits inside duct board and fastens to starting collar)
3.1601.5g - Boot to wood

Desired Outcome:
Ducts and plenums properly fastened to prevent leakage

Specification(s):
Predrill for screws or use ring shanked nails to fasten boot to wood

Objective(s):
Ensure durable joints

Tools:
1. Drill
2. Hammer

Materials:
1. Metal screws
2. Ring-shank nails

![Before Image](image1)

Unattached ducts are useless

![After Image](image2)

Damaged ducts should be repaired and securely fastened and sealed

1. Replace damaged ducting if necessary
2. Use ring-shank nails to hold ducting in place to subfloor
3. Drill pilot holes for metal fasteners
3.1601.5h - Boot to gypsum

Desired Outcome:
Ducts and plenums properly fastened to prevent leakage

Specification(s):
If accessible, boot hanger will be fastened to adjacent framing with screws or nails

Boot will be connected to boot hanger with screws

If inaccessible, boot will be fastened to gypsum with a durable, adhesive sealant

Objective(s):
Ensure durable joints

Register boot fastened to framing and sealed to gypsum with spray foam
Tools:
1. Caulking gun or foam gun
2. Cordless driver/drill

Materials:
1. Polyurethane caulk
2. Mastic and mesh tape (for gaps larger than 1/4")
3. Screws
4. Fiberglass mesh tape (for gaps larger than 1/4")
5. Disposable brushes
6. Spray foam sealant

Fasten boot hangers to adjacent framing, or screw through the boot into adjacent framing. Polyurethane caulk is a durable adhesive, and can accommodate up to 50% expansion and contraction. Mastic and mesh tape also form a strong, permanent seal. Spray foam may be used to seal boots into the opening once the boot is fastened in place.

Remove diffuser
Caulk the boot to the gypsum board. Angle the tip forward and force caulk into the joint
Wipe the caulk into the joint and smooth it as you go
Wipe away excess caulk (use water on siliconized acrylic, alcohol on silicone, and solvent on polyurethane caulk)
3.1601.5i - Duct board to flex

Desired Outcome:
Ducts and plenums properly fastened to prevent leakage

Specification(s):
Metal take-off collar with a hip and an internal metal backer will be used

Take-offs will be in accordance code requirements

Objective(s):
Ensure durable joints

Bad Practice
Improper attachment of flex to duct board

After
Flex duct correctly installed and sealed to duct board

Select a backer ring and flex duct installation tools
Cut the proper size hole in duct board
Select starting collar with tabs matching the thickness of the duct board
Insert the starting collar, bend tabs over and install at least 3 screws through the collar, duct board, and backer ring.

Starting collar with tabs bent over and screws through the duct board and backer ring.

Apply mastic liberally and install flex duct.
3.1602.8 - Supply Plenum (Furnace to Trunk Duct Connection) in Both Upflow and Downflow Air Handler Configurations

Desired Outcome:
Deliver all air from air handler to the trunk duct without leakage or restriction

Note:

3.1602.8a - Work assessment

Desired Outcome:
Deliver all air from air handler to the trunk duct without leakage or restriction

Specification(s):
Installer prework assessment will be conducted to determine:

- Size of plenum
- Alignment
- Connection method
- Existing sealing

Objective(s):
Ensure an efficient and effective way to accomplish work

Verify scope of work

3.1602.8b - Preparation

Desired Outcome:
Deliver all air from air handler to the trunk duct without leakage or restriction

Specification(s):
Debris will be removed

Surface will be prepared for work (e.g., remove tape, oil)

Floor will be prepared to receive the appropriately sized plenum

Objective(s):
Provide unobstructed path for work access and air flow
Ensure adhesion of materials to be installed

Provide a properly sized plenum to maximize distribution of air flow (equal to the furnace discharge)

Closet prepared for furnace installation

Tools:

1. Shop vac
2. Scraper
3. Bench duster
4. Dust pan

Materials:

1. Rags

Dust walls and floor of cabinet. Sweep debris into piles for pickup. Wipe down walls and floor

Vacuum cabinet clean

Inspect plenum for damage, then clean, scrape, and seal
Scrape loose material from insides of cabinet

Apply mastic to inside seams of plenum

3.1602.8c - Plenum rebuild or repair

Desired Outcome:
Deliver all air from air handler to the trunk duct without leakage or restriction

Specification(s):
Plenum will be rebuilt or repaired using compatible materials and will be:

- Mechanically fastened
- Sealed
- Durable
- Structurally sound
- Insulated
- Equipped with a vapor retarder where climate appropriate

If possible, flow diverter or turning vanes will be installed for air flow and/or balancing (e.g., bullhead Ts, offset air handler)

Objective(s):
- Minimize restrictions
- Maximize air flow and air distribution
- Minimize moisture issues
- Prevent condensation on plenum
Best Practice
Whenever possible, install turning vanes in plenums to reduce turbulence and improve airflow.

In Progress
Rebuilding and sealing a leaky existing plenum

Materials:
1. Starting collars and flanges
2. Zip ties
3. Mastic duct sealant
4. Fiberglass mesh tape
5. Sheet metal screws
6. Turning vanes
7. Duct board

Using turning vanes reduces turbulence and increases air flow. Use mastic and mesh tape on the outside of duct board plenums. Properly install metal starting collars to duct board and flex duct to metal collars (see spec 3.1601.5e for detail)

3.1602.8d - Repair work access

Desired Outcome:
Deliver all air from air handler to the trunk duct without leakage or restriction

Specification(s):
Point of access options include:

Option 1: Through the trunk duct

- Repair and seal access hole in the trunk duct
- Install insulation
- Repair belly/bottom liner

Option 2: Remove crossover duct
• Reattach crossover duct
• Seal and insulate crossover duct
• Repair belly/bottom liner

Option 3: Remove air handler

• Install new gasket, if necessary
• Mechanically attach furnace to the structure
• Reconnect utilities
• Replace and seal panels

Option 4: Through the furnace panel

• Replace and seal panels

Objective(s):

Repair work access

Prevent condensation

Minimize heat loss and heat gain from plenum

Various methods can be employed, but the key is to seal the furnace to trunk duct connection
Tools:
1. Utility knife
2. Saw
3. Prybar
4. Screw gun
5. Hammer
6. Drill
7. Saw
8. Disposable brushes

Materials:
1. Belly repair tape
2. Mastic duct sealant
3. Fiberglass mesh tape
4. Insulation
5. Air handler gasket

Choose the least invasive and labor-intensive method that will allow full access for sealing.

Always wear hand protection when working with sharp objects.

Cut belly to expose duct trunk. Use a utility knife to cut access under furnace plenum.

Create an opening large enough to completely seal the plenum to the trunk line.

Using mastic and mesh tape, fully seal the furnace to the trunk line. Repair and seal the access holes in duct and belly.

Removing the crossover duct may provide access to the plenum. Replace and seal the crossover duct after sealing plenum.

Remove the furnace panel. If the plenum to trunk connection is accessible here, complete sealing from this point.

Plenum to duct trunk connection coated with mastic sealant.
3.1602.8e - Safety testing

Desired Outcome:
Deliver all air from air handler to the trunk duct without leakage or restriction

Specification(s):
Equipment will be cycled

Combustion Appliance Zone (CAZ) test will be performed where combustion appliances are utilized

Objective(s):
Verify operation

Identify unsafe equipment operating conditions

Tools:
1. Manometer
2. Smoke pencil
3. Mirror
4. Stopwatch or watch with second hand
3.1602.8f - Performance testing

Desired Outcome:
Deliver all air from air handler to the trunk duct without leakage or restriction

Specification(s):
Pre- and post-retrofit duct leakage will be performance tested using a duct blaster or pressure pan, and results will be documented and reported to the homeowner and/or program

Objective(s):
Document post-retrofit duct leakage test has been performed
Best Practice
Test duct performance using pressure pan or duct blaster, before and after work.

Best Practice
Record readings before and after to determine improvement in performance.

Tools:
1. Duct blaster
2. Blower door
3. Manometer
4. Pressure Pan

Materials:
1. Duct mask

Perform duct blaster testing before beginning work. Record results.
Perform duct blaster testing after completion of work and compare to ‘before reading. Record results.

Set-up blower door to perform.
Perform pressure pan test on.
Perform pressure pan test after work is.
pressure pan testing before and after work

ductwork before beginning work.
Record result

completed and compare to 'before'
reading

Record test results to determine improvement of performance
3.1602.9 - Crossover Ducts

Desired Outcome:
Deliver all air from trunk to trunk without leakage or restriction

Note:

3.1602.9a - Work assessment

Desired Outcome:
Deliver all air from trunk to trunk without leakage or restriction

Specification(s):
Installer prework assessment will be conducted to determine:

- Location
- Types
- Leakage points

Objective(s):
Verify scope of work

In Progress
Locate the best access and egress points

In Progress
Locate crossover duct and determine what type of system will work best for home

3.1602.9b - Flexible crossover duct connections

Desired Outcome:
Deliver all air from trunk to trunk without leakage or restriction
Specification(s):
Flexible crossover duct connections will be added, rebuilt, or repaired using compatible materials and will be:

- Mechanically fastened at both inner and outer liner
- Sealed using UL-listed sealant that is durable, structurally sound, insulated
- Equipped with a vapor retarder

Whenever possible, rigid elbow or equivalent will be installed in crawl space crossover ducts

Floor insulation will be in contact with the outer liner of the crossover duct

Crossover duct vapor retarder will be sealed to the bottom liner (e.g., belly fabric)

New flex duct installation will be insulated to a minimum of R-8

When feasible, 26-gauge hard duct should be installed

If a new crossover is required, it must be insulated to at least R-8 and be air sealed

Objective(s):
Ensure lasting durable connections

Minimize air leakage and heat transfer

Maintain duct diameter around the turns

Maximize air flow and distribution

Before
Unattached ducts are useless

After
Crossover ducts should be attached securely, sealed to reduce leakage, and insulated to R-8
Tools:
1. Band tensioner
2. Drill
3. Brush

Materials:
1. Tie bands
2. Mastic or other appropriate sealant
3. 26 gauge elbow duct
4. R-8 insulated flexible duct with vapor retarder

1. Attach elbow duct and orient in correct direction to minimize duct run
2. Fasten elbow in place with at least three evenly-spaced fasteners
3. Apply mastic at metal-to-metal connection
4. Apply mastic to all elbow joints and flange
5. Slide inner liner onto flange with sealant
6. Fasten inner liner with tie band using band tensioner
7. Extend insulation and exterior casing up over elbow until they reach belly
8. Secure insulation and outer casing place with tie band
9. Use band tensioner to ensure that insulation and casing remain tight against belly
3.1602.9c - Support

Desired Outcome:
Deliver all air from trunk to trunk without leakage or restriction

Specification(s):
Crossover ducts will be installed so they are not in contact with the ground

Crossover ducts will be supported in accordance with flex duct manufacturer specifications, local codes

Support materials will be applied in accordance with manufacturer specifications for interior dimensions and will not crimp ductwork, dip, or sag

Objective(s):
Maximize air flow and distribution

Minimize condensation

Minimize air leakage and heat transfer

Tools:
1. Drill
2. Utility knife

Materials:
1. Fabric straps
2. Fasteners

3.1602.9d - Through-the-rim crossover duct

Desired Outcome:
Deliver all air from trunk to trunk without leakage or restriction

Specification(s):
Through-the-rim crossover ducts will be located and accessed through the bottom liner and branch duct; all branch crossover duct connections and end caps will be located and accessed

Hole size (air pathway) will be maximized between branch crossover and trunk

All connections will be mechanically fastened and sealed inside duct

End caps will be sealed

Objective(s):
Ensure all connections are identified

Maximize air flow and distribution

Ensure lasting durable connections

Minimize air leakage

3.1602.9e - Repair work access for through-the-rim crossover

Desired Outcome:
Deliver all air from trunk to trunk without leakage or restriction

Specification(s):
Access hole in the trunk duct will be repaired and sealed

Insulation will be reinstalled

Bottom liner/belly will be repaired

Objective(s):
Repair work access

Minimize heat transfer

3.1602.9f - Attic crossover

Desired Outcome:
Deliver all air from trunk to trunk without leakage or restriction

Specification(s):
Access to the attic will be created for all attic areas that contain crossover ducts, where feasible

Plenum boxes and crossover duct connections will be rebuilt, mechanically fastened, and sealed

Access holes will be repaired

Objective(s):
Ensure lasting durable connections

Minimize air leakage

Maximize air flow and distribution

Repair work access

3.1602.9g - Combustion Appliance Zone (CAZ) testing

Desired Outcome:
Deliver all air from trunk to trunk without leakage or restriction

Specification(s):
CAZ testing will be performed where combustion appliances are utilized

Objective(s):
Identify unsafe equipment operating conditions

See SWS 2.0201.3a-2.0201.3h for CAZ testing

Best Practice
Complete combustion appliance zone testing to ensure a healthy, safe environment
Tools:
1. Manometer
2. Mirror
3. Chemical smoke puffer
4. Stopwatch or watch with second hand
5. Gas leak detector
6. Combustion analyzer
7. 1/4" air line tubing

At the end of each day in which duct sealing or repair is performed, conduct Combustion Appliance Zone (CAZ) testing in accordance with the NREL Manufactured Home Standard Work Specifications, details 2.0201.3a through 2.0201.3h.

3.1602.9h - Performance testing

Desired Outcome:
Deliver all air from trunk to trunk without leakage or restriction

Specification(s):
Pre- and post-retrofit duct leakage will be performance tested using a duct blaster or pressure pan, and results will be documented and reported to the homeowner and/or program

Objective(s):
Document post-retrofit duct leakage test has been performed

Best Practice
Test duct performance using pressure pan or duct blaster, before and after work

Best Practice
Record readings before and after to determine improvement in performance
Tools:
1. Duct blaster
2. Blower door
3. Manometer
4. Pressure Pan

Materials:
1. Duct mask

Run duct blaster test before beginning work and record result.
Run duct blaster test after work and compare with 'before' reading. Record result.

Set-up blower door to perform pressure pan testing.
Perform pressure pan test on ductwork before beginning work. Record result.
Perform pressure pan test after work is completed and compare to 'before' reading.

Record readings before and after to determine if performance has improved.
3.1602.10 - Hard and Flex Branch Ducts

Desired Outcome:
Deliver air from trunk to termination (register/diffuser) without leakage

Note:

3.1602.10a - Work assessment

Desired Outcome:
Deliver air from trunk to termination (register/diffuser) without leakage

Specification(s):
Installer prework assessment will be conducted to determine:

- Location
- Connection types
- Leakage points

Access holes will be created for the work done at each location

Objective(s):
Verify scope of work
Gain access to duct connections

3.1602.10b - Reduce excess flex duct length

Desired Outcome:
Deliver air from trunk to termination (register/diffuser) without leakage

Specification(s):
Excess flex duct will be removed between the takeoff at trunk and floor register boot

Objective(s):
Improve air flow
Before
This duct is far too long, resulting in poor airflow.

After
The duct has been shortened, and is now properly supported.

3.1602.10c - Duct connection repairs

Desired Outcome:
Deliver air from trunk to termination (register/diffuser) without leakage

Specification(s):
Hard and flex duct branch connections will be rebuilt or repaired using compatible materials and will be mechanically fastened and sealed

Ends will be sealed

Objective(s):
Ensure lasting durable connections

Minimize air leakage

Maximize air flow and distribution
Here the worker is rebuilding a hard connection to the trunk line.

Tools:
1. drill
2. tin snips
3. inspection mirror
4. utility knife

Materials:
1. metal boot material
2. mesh tape
3. mastic
4. replacement grille

Measure the dimensions required for the new boot.
Fit the new boot on to the trunk line.
Seal the boot to the trunk line using mastic and mesh tape. An inspection mirror can make this easier.
Mechanically fasten the boot to the subfloor.

Install a new grille on the rebuilt boot.

3.1602.10d - Repair work access

Desired Outcome:
Deliver air from trunk to termination (register/diffuser) without leakage

Specification(s):
Access hole in the trunk/branch duct will be repaired and sealed

Insulation will be reinstalled

Bottom liner/belly will be repaired

Objective(s):
Repair work access

Minimize heat transfer

![Before](image1.png)
Before
Access hole cut into manufactured home branch duct

![After](image2.png)
After
Repaired, insulated, and sealed access hole in manufactured home duct and belly
Tools:
1. Utility knife
2. Disposable brushes
3. Outward clinching stapler
4. Scissors

Materials:
1. Fiberglass mesh tape
2. Mastic duct sealant
3. Foil tape
4. Insulation
5. Belly repair tape
6. Belly wrap
7. Staples
8. Solvent (acetone, paint thinner, denatured alcohol, Goof-Off, or similar) to clean aluminum duct
9. Spray adhesive for belly repairs

Thoroughly clean duct with solvent before applying foil tape and mastic

Secure edges of repair with foil tape and then liberally coat with mastic

Overlap foil tape with mastic by at least one inch on all sides

Replace or reinstall fiberglass belly insulation

Apply belly repair tape and fasten with outward clinching (stitch) staples. Spray adhesive will help adhere the tape

3.1602.10e - Combustion Appliance Zone (CAZ) testing

Desired Outcome:
Deliver air from trunk to termination (register/diffuser) without leakage

Specification(s):
CAZ testing will be performed where combustion appliances are utilized

Objective(s):
Identify unsafe equipment operating conditions

Best Practice
Complete combustion appliance zone testing to ensure a healthy, safe environment

Tools:
1. Manometer
2. Mirror
3. Chemical smoke pencil
4. Gas leak detector
5. Combustion analyzer
6. Stopwatch
7. 1/4" air line tubing

At the end of each day in which duct sealing or repair is performed, conduct Combustion Appliance Zone (CAZ) testing in accordance with the NREL Manufactured Home Standard Work Specifications, details 2.0201.3a through 2.0201.3h.

3.1602.10f - Performance testing

Desired Outcome:
Deliver air from trunk to termination (register/diffuser) without leakage

Specification(s):
Pre- and post-retrofit duct leakage will be performance tested using a duct blaster or pressure pan,
and results will be documented and reported to the homeowner and/or program

Objective(s):

Document post-retrofit duct leakage test has been performed

Best Practice

Test duct performance using pressure pan or duct blaster, before and after work

Record readings before and after to determine improvement in performance

Tools:

1. Duct blaster
2. Blower door
3. Manometer
4. Pressure Pan

Materials:

1. Duct mask

Perform duct blaster testing before beginning work. Record results

Perform duct blaster testing after completion of work and compare to "before reading. Record results
Set-up blower door to perform pressure pan testing before and after work.

Perform pressure pan test on ductwork before beginning work. Record result.

Perform pressure pan test after work is completed and compare to 'before' reading.

Record test results to determine improvement of performance.
3.1602.11 - Air Sealing System

Desired Outcome:
Ducts and plenums sealed to prevent leakage

Note:

3.1602.11a - New component to new component sealant selection

Desired Outcome:
Ducts and plenums sealed to prevent leakage

Specification(s):
Any closure system used will meet or exceed applicable standards

Objective(s):
Ensure effectiveness of air sealing system

Mastic sealant is an approved, durable, and effective sealant
Tools:
1. Utility knife
2. Disposable brushes

Materials:
1. UL 181 B-FX tape (cover with mastic after assembly)
2. Fiberglass mesh tape (use, along with mastic, to cover gaps wider than 1/4-inch and to add strength to assemblies)
3. Mastic (air duct sealant) labeled UL 181 B-M
4. Spray polyurethane foam

Per the 2012 IRC, use tape labeled 181 B-FX and/or mastic labeled 181 BM. Seal and mechanically fasten all duct connections to metal flanges. Fasten round metal ducts with at least three screws equally spaced around the diameter, and make sure that the ducts and fittings are inserted at least 1". DO NOT USE unlisted duct tape as a sealant on any duct.

Exceptions:

1. Spray polyurethane foam shall be permitted to be applied without additional joint seals.
2. Where a duct connection is made that is partially inaccessible, three screws or rivets shall be equally spaced on the exposed portion of the joint so as to prevent a hinge effect.
3. Continuously welded and locking-type longitudinal joints and seams in ducts operating at static pressures less than 2 inches of water column (500 Pa) pressure classification shall not require additional closure systems.

Use fiberglass mesh tape to cover gaps; coat with at least 2mm of mastic
Coat seams with mastic (air duct sealant) conforming to standard UL 181 B-M
Use tape to assemble joints, then coat with at least 2mm of mastic

3.1602.11b - New component to existing component

Desired Outcome:
Ducts and plenums sealed to prevent leakage

Specification(s):
Duct surface to receive sealant will be cleaned

Seams, cracks, joints, holes, and penetrations less than ¼" will be sealed using fiberglass mesh and mastic

Mastic alone will be acceptable for holes less than ¼" that are more than 10' from air handler

Holes greater than ¾" will be patched with metal or joint will be rebuilt to reduce the gap size

Seams, cracks, joints, holes, and penetrations between ¼" and ¾" will be sealed in two stages:

- They will be backed using temporary tape (e.g., foil tape) as a support before sealing
- They will be sealed using fiberglass mesh and mastic

Objective(s):
Eliminate air leakage into or out of ducts and plenums

Ensure adhesion of primary seal (fiberglass mesh and mastic) to the duct

Reinforce seal

Support mastic and fiberglass mesh during curing

Before
Unsealed metal ductwork

After
Mastic and mesh tape used to seal metal ductwork

Tools:
1. Zip tie tensioning tool
2. Utility knife
3. Disposable brushes
4. Tin snips
5. Screw gun

Materials:
1. Mastic
2. Fiberglass mesh tape
3. Metal starting collar
4. Foil tape
5. Sheet metal
Fasten collar into plenum with screws that reach through the tabs and plenum into a backing ring. Apply mastic liberally.

Apply mastic to metal collar.

Install duct liner onto collar and secure with properly tensioned zip tie.

Apply additional mastic over zip tie and edge of flex duct liner.

3.1602.11c - Existing component to existing component

Desired Outcome:
Ducts and plenums sealed to prevent leakage.

Specification(s):
Duct surface to receive sealant will be cleaned.

Fiberglass mesh and mastic will overlap temporary tape by at least 1" on all sides.

Seams, cracks, joints, holes, and penetrations larger than ¾" will be repaired using rigid duct material.

Fiberglass mesh and mastic will overlap repair joint by at least 1" on all sides.

Fiberglass mesh and mastic will be the primary seal.
Objective(s):
Eliminate air leakage into or out of ducts and plenums

Ensure adhesion of primary seal (fiberglass mesh and mastic) to the duct

Reinforce seal

Support mastic and fiberglass mesh during curing

Before
Unsealed joints and connections need to be sealed to stop air leaks, improve durability, and minimize health risks

After
Sealed ductwork connections help prevent leakage

Tools:
1. Brush

Materials:
1. Mastic
2. Fiberglass mesh tape

Prepare work area by assessing any safety concerns and cleaning duct surface

Wrap joint with fiberglass mesh tape

Apply UL 181 mastic to seal joint
3.1602.11d - Performance testing

Desired Outcome:
Ducts and plenums sealed to prevent leakage

Specification(s):
Pre- and post-retrofit duct leakage will be performance tested using a duct blaster or pressure pan, and results will be documented and reported to the homeowner and/or program

Objective(s):
Document post-retrofit duct leakage performed

Tools:
1. Duct blaster
2. Blower door
3. Manometer
4. Pressure Pan

Best Practice
Test duct performance using pressure pan or duct blaster, before and after work

Materials:
1. Duct mask

Best Practice
Record readings before and after to determine improvement in performance

Perform duct blaster testing before beginning work. Record results
Perform duct blaster testing after completion of work and compare to
Set-up blower door to perform pressure pan testing.

Perform pressure pan test on ductwork before beginning work. Record result.

Perform pressure pan test after work is completed and compare to 'before' reading.

Record test results to determine improvement of performance.
3.1602.12 - Air Sealing System Components

Desired Outcome:
Ducts and plenums sealed to prevent leakage

Note:

3.1602.12a - Duct boot to interior surface

Desired Outcome:
Ducts and plenums sealed to prevent leakage

Specification(s):
Gaps between boot and gypsum less than a ¼" will be sealed using mastic or appropriate flexible caulking

Gypsum edge will be wetted before applying mastic

Objective(s):
Prevent air leakage

Tools:
1. Utility knife
2. Spray bottle
3. Putty knife

Materials:
1. Mastic
2. Fiberglass mesh tape
Remove grill to expose duct boot and gaps

Wet the edges of the drywall to ensure a good bond

Cut mesh tape to fit around duct boot and cover gaps

Apply mastic over mesh tape to create heat resistant, durable bond

Once mastic is set, grill can be replaced and mastic should not show

3.1602.12b - Air handler cabinet outside conditioned space

Desired Outcome:
Ducts and plenums sealed to prevent leakage

Specification(s):
Joints will be sealed and cracks/holes not needed for proper function of unit will be sealed using removable sealant (e.g., foil tape)

Objective(s):
Reduce air leakage while maintaining accessibility
Unnecessary holes in the air handler cabinet need to be sealed

Materials:
1. Foil tape

Before

Use removable foil tape to seal holes

After

1. Unnecessary holes in the air handler cabinet should be sealed
2. Removable foil tape should be used to seal
3. Fully cover holes with tape to seal completely

3.1602.12c - Performance testing

Desired Outcome:
Ducts and plenums sealed to prevent leakage

Specification(s):
Pre- and post-retrofit duct leakage will be performance tested using a duct blaster or pressure pan, and results will be documented and reported to the homeowner and/or program

Objective(s):
Document post-retrofit duct leakage test has been performed
Best Practice
Test duct performance using pressure pan or duct blaster, before and after work

Best Practice
Record readings before and after to determine improvement in performance

Tools:
1. Duct blaster
2. Blower door
3. Manometer
4. Pressure Pan

Materials:
1. Duct mask

Perform duct blaster testing before beginning work. Record results
Perform duct blaster testing after completion of work and compare to ‘before reading. Record results

Set-up blower door to perform
Perform pressure pan test on
Perform pressure pan test after work is
pressure pan testing before and after work

ductwork before beginning work. Record result

completed and compare to 'before' reading

Record test results to determine improvement of performance
3.1602.13 - Return—Framed Platform

Desired Outcome:
The return duct is installed to prevent air leakage

Note:

3.1602.13a - Preparation

Desired Outcome:
The return duct is installed to prevent air leakage

Specification(s):
Debris and dirt will be cleaned out of the return platform

Objective(s):
Allow for the application of rigid materials and sealants

Tools:

1. Shop vacuum

3.1602.13b - Infill and backing

Desired Outcome:
The return duct is installed to prevent air leakage
Specification(s):
Backing or infill will be provided as needed to meet the specific characteristics of the selected material and the characteristics of the open space.

Backing or infill will not bend, sag, or move once installed.

Material will be rated for use in return duct systems.

Objective(s):
Minimize hole size to ensure successful use of sealant.

Ensure closure is permanent and supports all loads (e.g., return air pressure).

Ensure sealant does not fall out.

Tools:
1. Tape measure
2. Utility knife
3. Drill
4. Caulk gun

Materials:
1. XPS
2. Drywall
3. Fire-resistant caulk
4. Fasteners

Before
Leakage from air return into wall cavities should be eliminated.

In Progress
Only materials rated for use in higher temperature areas should be used.
3.1602.13c - Sealant selection

Desired Outcome:
The return duct is installed to prevent air leakage

Specification(s):
Sealants will be compatible with their intended surfaces

Sealants will be continuous and meet fire barrier specifications

Objective(s):
Select permanent sealant

Ensure sealant meets or exceeds the performance characteristics of the surrounding materials

Best Practice
Sealants, like mesh and UL 181 mastic, meet IRC, ASTM, and UL specs

Best Practice
Caulk sealants will be continuous and compatible with surface
<table>
<thead>
<tr>
<th>Tools</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Caulk gun</td>
<td>1. Fiberglass mesh</td>
</tr>
<tr>
<td>2. Utility knife</td>
<td>2. Siliconized caulk</td>
</tr>
<tr>
<td>3. Taping knife</td>
<td>3. UL 181 mastic</td>
</tr>
</tbody>
</table>

Paraphrased from 2012 IRC R302.9: Wall and ceiling finishes will have a flame spread index of 200 or less and a smoke-developed index of 450 or less
3.1701.1 - Holes, Penetrations, and Connection Seam

Desired Outcome:
The exterior of the seam is weathertight and connection between house and addition is properly sealed to minimize air leakage and moisture movement between unconditioned and conditioned space.

3.1701.1a - Work assessment

Desired Outcome:
The exterior of the seam is weathertight and connection between house and addition is properly sealed to minimize air leakage and moisture movement between unconditioned and conditioned space.

Specification(s):
Installer prework assessment will be conducted to determine:

- Structural integrity
- Roof leaks
- Insect infestation
- Accessibility
- Mechanical attachment
- Location of marriage wall seams
- Number, type, size, and location of penetrations

Objective(s):
Ensure work space is safe and ready for air sealing

Verify scope of work

3.1701.1b - Hole, seam, line, and penetration sealing

Desired Outcome:
The exterior of the seam is weathertight and connection between house and addition is properly sealed to minimize air leakage and moisture movement between unconditioned and conditioned space.

Specification(s):
Marriage wall seams will be sealed continuously at walls, floors, and ceiling connection

All accessible holes and penetrations in the addition envelope will be sealed

Backing or infill will be provided as needed, when accessible

Objective(s):
Minimize air leakage
Maintain durability and/or flexibility
Ensure sealant is effective and durable

3.1701.1c - Materials

Desired Outcome:
The exterior of the seam is weathertight and connection between house and addition is properly sealed to minimize air leakage and moisture movement between unconditioned and conditioned space

Specification(s):
Materials will be used or installed in accordance with product manufacturer specifications

Objective(s):
Select materials to ensure durable and permanent repair

3.1701.1d - Addition exterior wall air sealing

Desired Outcome:
The exterior of the seam is weathertight and connection between house and addition is properly sealed to minimize air leakage and moisture movement between unconditioned and conditioned space

Specification(s):
All holes and penetrations on exterior surface of exterior walls will be sealed to ensure resistance to outdoor elements

Intentionally ventilated walls will not be sealed at vent locations (e.g., weep holes)

All holes and penetrations on the interior surface of exterior walls will be repaired
Backing or infill will be provided as needed to meet the specific characteristics of the selected sealant and the characteristics of the penetration

Objective(s):
Minimize air leakage
Maintain durability

Ensure resulting closure is permanent and supports expected wind and mechanical pressure loads

Ensure sealant is effective and durable

3.1701.1e - Addition interior wall air sealing

Desired Outcome:
The exterior of the seam is weathertight and connection between house and addition is properly sealed to minimize air leakage and moisture movement between unconditioned and conditioned space

Specification(s):
All accessible holes and penetrations in top and bottom plates will be sealed

Backing or infill will be provided as needed to meet the specific characteristics of the selected sealant and the characteristics of the penetration

Objective(s):
Minimize air leakage
Maintain durability

Ensure resulting closure is permanent and supports expected load

Ensure sealant is effective and durable

3.1701.1f - Addition floor air sealing (decking, subfloor, floor decking)

Desired Outcome:
The exterior of the seam is weathertight and connection between house and addition is properly sealed to minimize air leakage and moisture movement between unconditioned and conditioned
Space

Specification(s):
Backinng or infill will be provided as needed to meet the specific characteristics of the selected sealant and the characteristics of the penetration

The backing or infill will not bend, sag, or move once installed

Objective(s):
Ensure resulting closure is permanent and supports expected wind and mechanical pressure loads

Ensure sealant is effective and durable

3.1701.1g - Sealant selection

Desired Outcome:
The exterior of the seam is weathertight and connection between house and addition is properly sealed to minimize air leakage and moisture movement between unconditioned and conditioned space

Specification(s):
Sealants will be used to fill holes no larger than recommended by manufacturer specifications

Sealants will be compatible with all adjoining surfaces

Sealants will be continuous and meet fire barrier specifications, if required

Objective(s):
Create a permanent seal

Ensure sealant meets or exceeds the performance characteristics of the surrounding materials
Bad Practice
Avoid sealants that do not allow for expansion between dissimilar materials

Best Practice
Flexible sealants compensate for differential expansion and maintain a seal

Tools:
1. Caulk gun
2. Spray foam gun

Materials:
1. Caulk
2. Spray foam

Caulking can be used to span gaps up to 1/4 inch
Spray foam can be used to span gaps up to 3 inches
Check manufacturer specifications to verify spanning capabilities

Also check manufacturer specs for incompatibility with intended surfaces
3.1701.1h - Floor repair

Desired Outcome:
The exterior of the seam is weathertight and connection between house and addition is properly sealed to minimize air leakage and moisture movement between unconditioned and conditioned space.

Specification(s):
Floor repair material will meet or exceed strength of existing floor material.
Repair will span from joist to joist and blocking added as needed to support floor.
Patches smaller than 144 square inches will not require repairs from joist to joist.
Floor repair material will be glued, fastened, and air sealed.

Objective(s):
Ensure floor is structurally sound.
Minimize air leakage.

Tools:
1. Saw
2. Tape measure
3. Caulk gun
4. Marker
5. Utility knife
6. Drill

Materials:
1. Plywood or other suitable subflooring material
2. Fasteners
3. Caulk
4. Sealant
When possible, measure patch to reach surrounding joist. If not, blocking will be required.

Mark damaged area to be removed to create most efficient patch

Cut out damaged area of floor, with minimal damage to surrounding floor and joists

Once damaged area has been removed, measure for new patch and cut replacement subflooring to size

Clean debris from surrounding area and mounting surfaces

Apply sealant to mounting surfaces

Securely fasten new subfloor in place, attaching to joist or blocking as necessary

Seal gaps around patched in subfloor to create air seal between conditioned living space and crawl space

3.1701.1i - Structural materials

Desired Outcome:
The exterior of the seam is weathertight and connection between house and addition is properly...
sealed to minimize air leakage and moisture movement between unconditioned and conditioned space

Specification(s):
Materials will be used or installed in accordance with product manufacturer specifications

Objective(s):
Select materials to ensure durable and permanent repair

Tools:
1. Caulking gun
2. Nail gun
3. Screw gun

Materials:
1. Nominal 2X framing lumber
2. 7/16" OSB or 1/2" CDX plywood
3. Nails or screws
4. Construction adhesive

3.1701.1j - Ceiling hole repair

Desired Outcome:
The exterior of the seam is weathertight and connection between house and addition is properly sealed to minimize air leakage and moisture movement between unconditioned and conditioned space

Specification(s):
Ceiling repair material must meet or exceed strength of existing ceiling material

Ceiling repair must span from truss to truss or add blocking as needed for support
The backing or infill will not bend, sag, or move once installed

All accessible damaged vapor barriers will be repaired

Penetrations through the air barrier must be repaired

Objective(s):
Ensure ceiling is structurally sound

Minimize air leakage

Ensure closure is permanent and supports expected wind and mechanical pressure loads

Ensure sealant does not fall out

![Before](image1.png) ![After](image2.png)

Replace any missing insulation and repair holes in vapor barrier

Drywall patch before final sand and prime

Tools:
1. 6-inch and 12-inch drywall taping knives
2. Sanding block or sanding sponge
3. Utility knife
4. Keyhole saw
5. Screw gun

Materials:
1. Drywall or paneling
2. Fiberglass joint tape
3. Joint compound
4. Drywall screws or nails
5. Support material if needed (typically 1X4, 1X6, or 2X4 dimensional lumber)

For small holes, enlarge to a rectangular shape and install 1 X 4 blocks above two edges of the hole. For larger holes, enlarge opening to centers of nearest trusses and fasten the patch to the framing. For small holes, enlarge to a rectangular shape and install 1 X 4 blocks above two edges of the hole. For larger holes, enlarge opening to centers of nearest trusses and fasten the patch to the framing.

Missouri Department of Natural Resources
Division of Energy
Replace any missing insulation and repair holes in vapor barrier

Prepare the hole by cutting the edges clean and square.

Cut drywall and fasten in place

Add joint tape and coat of joint compound

3.1701.1k - High temperature application

Desired Outcome:
The exterior of the seam is weathertight and connection between house and addition is properly sealed to minimize air leakage and moisture movement between unconditioned and conditioned space

Specification(s):
Only noncombustible materials will be used in contact with chimneys, vents, and flues

Objective(s):
Prevent a fire hazard
Gaps around floor penetrations allow air and moisture movement

Tools:
1. Caulk gun
2. Metal snips
3. Drill/screwdriver

Materials:
1. High-temperature caulk
2. Non-combustible material such as aluminum or galvanized steel flashing or cement board
3. Appropriate fasteners

Prepare work area by removing any insulation and debris

Use high-temperature caulking (600°F min)

Apply first ring of caulking to match shape of opening
Apply second ring of caulking to size and shape of rigid material

Fasten rigid material and apply additional caulking

Fasten rigid material to cover penetration and seal against flue with caulk
4.1003.8 - Installing Fiberglass Blown Insulation for Flat, Bowed, or Vaulted Ceilings (via Roof Side Lift)

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and unconditioned space

4.1003.8a - Attic, ceiling, and roof verification

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
All combustion appliance flues will be terminated to the outdoors and terminations will maintain proper clearance above snow loads

A distance no less than 2" will be maintained between any combustion appliance flue and combustible materials, unless zero clearance flue is in place

All ventilation systems will maintain a continuous connection and terminate to the outdoors

All broken mushroom vents will be replaced or removed and sealed

All plumbing stacks will be terminated to the outdoors

Non-IC rated light fixtures will be replaced with airtight IC-rated fixtures

All recessed lights will be labeled as having an air leakage rate no more than 2.0 CFM when tested in accordance with ASTM E 283 at a 75 pascals pressure differential

All obvious ceiling penetrations will be sealed

The space between combustion appliance flues and the ceiling will be sealed with fire-rated materials

All roof, attic, and ceiling assemblies will be structurally sound; loose ceiling panels will be secured

Temporary ceiling bracing will be recommended during the insulation installation process

Dishing and pooling issues that allow standing water will be addressed
All known roof water leaks will be repaired before insulation installation

Objective(s):
Ensure occupant and worker safety
Verify attic space is ready to insulate
Ensure structural integrity of the roof and ceiling assembly
Prevent intrusion of bulk moisture
Prevent damage during the insulation installation process

![Before](image1) ![After](image2)

Photo credit: Cal Steiner

Tools:
1. Scaffolding and ladders
2. Screw gun
3. Long, flat prybar
4. 5-in-one paint scraper tool
5. Flashlights and headlamps
6. Digital camera

Materials:
1. Wooden blocks

Inspect and correct each of the specified items: flues terminated to outside, 2" clearance to combustibles from flues, ventilation ducts terminated outdoors, non-airtight, non-IC rated recessed lighting replaced with airtight, IC-rated recessed units, broken mushroom vents replaced or removed, plumbing vents terminated outdoors, ceiling penetrations sealed, structural defects in roof, attic, and ceiling assemblies corrected, ponds on roof remedied, and all roof leaks repaired.
Inspect roof for evidence of water pooling, leaks, or damage. Verify proper vent terminations.

Inspect ceiling for weakness, leaks, clearance to combustibles, loose panels, and penetrations.

Verify presence of rain caps on all vents.

Inspect all patches and repairs, and correct deficiencies if necessary.

Verify at least 2" clearance to combustibles, unless flue is designed for zero clearance. Repair if needed.

Use temporary supports to avoid ceiling collapse during insulation install.

Add fasteners wherever needed to firmly attach ceiling to the trusses.

Investigate all water stains and sources of moisture. Repair before insulating the attic.

After opening the roof edge, verify proper clearance to combustibles and inspect vent connections.

4.1003.8b - Attic access

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and...
unconditioned space

Specification(s):
Fasteners will be removed from the J channel and the roof edge on the most easily accessible side of the house

Roof will be separated from the heel plate and siding roof will be lifted and propped to accommodate fill tube

Length of opening will be enough to allow ease of access and reattachment while minimizing potential damage from high winds

If subsheathing is present, access will be gained through subsheathing

Attic will be visually inspected for the location of existing insulation, obstructions, hazards, and construction type

Objective(s):
Create access to the full attic cavity

Protect roof from wind damage during installation

Ensure ease of roof reattachment

Determine insulation installation technique

![Best Practice](image1)
Pitched, bowed, and vaulted roofs are good candidates for insulation via roof side lift

![Best Practice](image2)
Insulation can be installed without disturbing the interior environment

Tools:
1. Pry bar
2. Drill
3. Utility knife
4. Pliers

Materials:
1. Wood blocks
Ensure a safe work environment by setting up scaffolding. Work in manageable sections.

Remove fasteners from the J-channel.

Cut through putty tape and pry J-channel away from roof seam.

Work in manageable sections to minimize roof damage. One section of J-channel is a long enough area.

Remove staples as necessary to lift roof and inspect underneath.

Place blocks to lift roof and enable inspection of roof cavity for obstructions and other concerns.

Work in small sections to minimize flexing of roof and risk of wind damage.

Once visual inspection has shown roof cavity to be viable, begin blowing insulation.

4.1003.8c - Blowing machine set up

 Desired Outcome: Consistent, uniform thermal boundary and air barrier between the conditioned space and

Insulation > Attics > Attic Ceilings
unconditioned space

Specification(s):
Blowing machine pressure test will be performed with air on full, feed off, and gate closed

Hose outlet pressure will be set in accordance with manufacturer specifications

Objective(s):
Ensure machine is capable of delivering uniform insulation density and coverage

![Best Practice](image1)

Best Practice
Before loading insulation, check that machine is operating properly and set up on a dry, level surface near power source

![Best Practice](image2)

Best Practice
Test insulation blowing machine's pressure to ensure it is operating within manufacturer's parameters

Tools:
1. Hex wrench
2. Pressure gauge

![Image 1](image3)

Check electrical connections before operation

![Image 2](image4)

Make sure feed is off for testing and gate is closed

![Image 3](image5)

Adjust blower to full, or maximum
Using pressure gauge at feed outlet, verify that machine is working within manufacturer’s specifications

If testing shows machine is operating properly, attach hose and tighten fitting to minimize slippage

Open gate to allow for feed of insulation, turn on feed

4.1003.8d - Fiberglass blown insulation installation

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
Insulation will be installed to a density of 1.5 to 1.6 pounds per cubic foot

Using fill tube, 100% of each cavity will be filled to a consistent density

Fill tube will be inserted within 6” of the end of each attic cavity

Insulation will be installed into the void of the attic cavity:

- If existing insulation is roof-mounted, insulation will be blown below
- If existing insulation is ceiling-mounted, insulation will be blown above
- If existing insulation is mounted at both locations, insulation will be blown in between

Avoid overfilling of roof edges and above attic trusses

Flame spread and smoke-developed index for insulation will be a flame spread rating of 25 or less and a smoke development rating of 450 or less when tested in accordance with ASTM E84

Objective(s):
Fill entire attic cavity to the prescribed R-value to reduce air infiltration

Avoid clogging of the cavity and the fill tube
Prevent damage to the ceiling

Allow roof to be returned to original position

Fire safety will be maintained

If insulation is roof mounted, blow below it.

If insulation is ceiling mounted, blow above it.

If insulation is mounted at both the ceiling and the roof, blow between it.

Insulation meets ASTM E 84.
4.1003.8e - Roof reattachment

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
If existing J channel is damaged, it will be replaced

Existing sealant will be removed from the roof edge and J channel

At a minimum, new sealant will be reinstalled at the original location

Roof and J channel will be fastened to the original location with new screws

All seams, edges, and penetrations will be sealed as necessary

Objective(s):
Prepare roof edge and J channel for reattachment

Reattach roof edge and J channel without leaks

![Before](image1.png)
Before
If salvageable, clean J-channel before reinstallment

![After](image2.png)
After
Attach J-channel using old holes and new fasteners

Tools:
1. Drill
2. Utility knife
3. Snips

Materials:
1. Fasteners
2. J-channel
3. Putty tape
If J-channel is salvageable, clean thoroughly before applying putty tape

Apply putty tape to new or reused J-channel to seal roof seam

Using new fasteners, attach J-channel along roof seam and seal as necessary

4.1003.8f - Verification of details

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
Installation process will be considered complete when installer has verified that damage has not occurred to the roof or ceiling assemblies during the installation process

Objective(s):
Verify the integrity of the house has been maintained

Best Practice
Exterior should be inspected to verify that roof has not been damaged

Best Practice
Interior ceiling should also be inspected to make sure that no damage was incurred
4.1003.9 - Installing Fiberglass Blown Insulation for Flat, Bowed, or Vaulted Ceilings (via Exterior Access from Top of Roof)

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and unconditioned space

4.1003.9a - Attic, ceiling, and roof verification

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
All combustion appliance flues will be terminated to the outdoors and terminations will maintain proper clearance above snow loads

A distance no less than 2" will be maintained between any combustion appliance flue and combustible materials, unless zero clearance flue is in place

All ventilation systems will maintain a continuous connection and terminate to the outdoors

All broken mushroom vents will be replaced or removed and sealed

All plumbing stacks will be terminated to the outdoors

Non-IC rated light fixtures will be replaced with airtight IC-rated fixtures

All recessed lights will be labeled as having an air leakage rate not more than 2.0 CFM when tested in accordance with ASTM E 283 at a 75 pascals pressure differential

All obvious ceiling penetrations will be sealed

The space between combustion appliance flues and the ceiling will be sealed with fire-rated materials

All roof, attic, and ceiling assemblies will be structurally sound:

- Loose ceiling panels will be secured
• Temporary ceiling bracing will be recommended during the insulation installation process

Dishing and pooling issues that allow standing water will be addressed

All known roof water leaks will be repaired before installing installation

Objective(s):
Ensure occupant and worker safety
Verify attic space is ready to insulate
Ensure structural integrity of the roof and ceiling assembly
Prevent intrusion of bulk moisture
Prevent damage while installing insulation

![Before](image1) ![After](image2)

Tools:
1. 2-1/2" hole saw
2. Power drill
3. Borescope
4. Inspection mirror
5. Flashlight

Materials:
1. Material requirements will vary based on conditions
2. Drywall or paneling
3. IC/Airtight recessed lights
4. Fire caulk
5. Vent terminations
6. Silicone caulk
7. Galvanized sheet metal and screws
8. Roof cement
9. Temporary ceiling bracing

Inspect and correct each of the specified items: flues terminated to outside, 2" clearance to combustibles from flues, ventilation ducts terminated outdoors, non-airtight, non-IC rated recessed lighting replaced with airtight, IC-rated recessed units, broken mushroom vents replaced or removed,
plumbing vents terminated outdoors, ceiling penetrations sealed, structural defects in roof, attic, and ceiling assemblies corrected, ponds on roof remedied, and all roof leaks repaired.

Inspect roof for evidence of water pooling, leaks, or damage. Verify proper vent terminations.

Inspect all patches and repairs, and correct deficiencies if necessary.

Verify presence of rain caps on all vents.

Inspect ceiling for weakness, leaks, clearance to combustibles, loose panels, and penetrations.

Verify at least 2" clearance to combustibles, unless flue is designed for zero clearance. Repair if needed.

Repair and refasten sagging or unsecured ceiling panels. Caulk and seal seams to prevent insulation spilling into house.

Use temporary supports to avoid ceiling collapse during insulation install.
4.1003.9b - Attic access

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
Access to the attic cavity will be created through the gable vents.

Attic will be visually inspected for the location of existing insulation, wiring, flues, obstructions, hazards, and construction type

Objective(s):
Create access to the full attic cavity

Maintain the integrity of the roof truss

Determine technique for installing insulation

In Progress

Manufactured home attic access by slicing along ridgeline

Tools:
1. 7-1/4" circular saw
2. Electric drill
3. Carbide-tipped hole saw bits
4. Insulation blowing machine
5. 2" PVC pipe, 10 feet long
6. 4-1/2" or 7" angle grinder with flexible sanding wheels
7. Tape measure and chalk lines
8. Scaffolding

Materials:
1. Abrasive or carbide-toothed cutting wheels
If attic has both flat and vaulted ceilings, access may be gained through the gable ends for the flat ceilings.

Always use hand protection when working with metal edges and/or sharp tools.

Determine and mark truss locations on roof, and choose method of access. Avoid drilling or sawing into trusses.

Option 1: Drill a 4" hole in each truss cavity two to three feet down from the ridge.

Option 2: Cut a hole into each truss cavity, big enough to inspect the opening and admit the fill tube.

Option 3: Cut the roof open along the highest point from end to end. Make crosswise cuts at each end if needed.

Regardless of access method, visually inspect attic for existing insulation, wiring, flues, obstructions, and hazards.

4.1003.9c - Blowing machine set up

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
Blowing machine pressure test will be performed with air on full, feed off, and gate closed

Hose outlet pressure will be set in accordance with manufacturer specifications
Objective(s):
Ensure machine is capable of delivering uniform insulation density and coverage

Best Practice
Before loading insulation, check that machine is operating properly and set up on a dry, level surface near power source

Best Practice
Test to verify that machine is operating within manufacturer’s limits

Tools:
1. Pressure gauge
2. Generator

Check electrical connections before operation
Make sure feed is off for testing and gate is closed
Adjust blower to full, or maximum
Using pressure gauge at feed outlet, verify that machine is working within manufacturer's specifications.

If testing shows machine is operating properly, attach hose and tighten fitting to minimize slippage.

Open gate to allow for feed of insulation, turn on feed.

4.1003.9d - Fiberglass blown insulation installation

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and unconditioned space.

Specification(s):
Insulation will be installed to a density of 1.5 to 1.6 pounds per cubic foot.

Using fill tube, 100% of each cavity will be filled to a consistent density.

Fill tube will be inserted within 6” of the end of each attic cavity.

Insulation will be installed into the void of the attic cavity:

- If existing insulation is roof-mounted, insulation will be blown below.
- If existing insulation is ceiling-mounted, insulation will be blown above.
- If existing insulation is mounted at both locations, insulation will be blown in between.

Insulation will be filled no higher than the top of the truss.

Flame spread and smoke-developed index for insulation will be a flame spread rating of 25 or less and a smoke development rating of 450 or less when tested in accordance with ASTM E84.

Objective(s):
Fill entire attic cavity to the prescribed R-value to reduce air infiltration.

Avoid clogging of the cavity and the fill tube.
Prevent damage to the ceiling

Allow roof to be returned to original position

Fire safety will be maintained

Always wear PPE appropriate to the work environment and job at hand.

If insulation is roof mounted, blow below it.

If insulation is ceiling mounted, blow above it.

If insulation is mounted at both the ceiling and the roof, blow between it.

Insulation meets ASTM E 84.
4.1003.9e - Patching and sealing openings

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
If the roof is sliced:

- A solid metal ridge cap will be centered over the slice
- A flexible and durable sealant will be sandwiched between the roof and the ridge cap
- Screws will be installed to prevent wrinkles and create a permanent seal
- Screws will not go into any wood framing
- A durable and flexible final coating will be applied over the screws and edge of the ridge cap to create a continuous seal between the roof and the perimeter of the ridge cap

For holes that are drilled or cut, the initial patch will be applied using the following procedure:

- At least 6" of surface surrounding the opening will be cleaned before patch is installed
- Sealant will be continuous and applied in between the patch and the roof
- Sealant will be an all-weather adhesive that is flexible and durable

If a metal patch is used:

- Patch will overlap the opening by 2" on all sides
- Gauge will be equal to or greater than the roof material
- Fasteners will be installed to prevent wrinkles and create a permanent seal
- If a plug is used, it will be flanged and have a tight fit
- Screws will not go into any wood framing

A durable and flexible 45 mil adhesive patch will be applied in accordance to manufacturer specifications over the initial patch and will have at a minimum:

- Tear strength of 640g
- Elongation of 380%
- Application temperature no lower than 55°F and no greater than 110°F
- Services temperature no less than -25°F and no greater than 150°F
- Adhesive patch will overlap the initial patch by 2" on all sides
- A durable and flexible final coating will be applied over the adhesive patch to create a continuous seal between the roof and the perimeter of the patch
- All remaining seams, edges, and penetrations will be sealed as necessary
Objective(s):
Effectively patch and seal all openings
Create a durable patch that will prevent roof leaks

In Progress
Rough cut hole that will need to be sealed.

In Progress
Placing sealant around the exposed edges of the roof patch ensures a watertight seal.

Tools:
1. Roller
2. Self adhering patch
3. sheet metal
4. 6" duct cap(to match 6" hole)
5. heat gun
6. drill

Insert 6" plug and seal around the perimeter of the opening.

Firmly push the plug into place, until it is flush with the roof surface.

Use a 10"x10" sheet metal patch to mark the center of the hole.
Apply sealant to the underside of the sheet metal patch.

Secure the metal patch to the roof being sure to place mechanical fasteners through the sealant.

Apply a 14"x14" self adhering roof patch on top of the sheet metal patch.

Use a heat gun to make the adhesive pliable to get the best possible seal.

Forcefully roll the patch into place, starting from the center and working toward the edge.

4.1003.9f - Verification of details

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
Installation process will be considered complete when installer has verified that damage has not occurred to the roof or ceiling assemblies during the installation process

Objective(s):
Verify the integrity of the house has been maintained
In Progress

Verify that no damage has been done by the workers. When in doubt, verify with photo documentation.

After

Document and repair any damage the workers caused.

Tools:

1. IR camera
4.1003.10 - Installing Fiberglass Blown Insulation for Flat, Bowed, or Vaulted Ceilings (via Interior Access Through the Ceiling)

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and unconditioned space

4.1003.10a - Attic, ceiling, and roof verification

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
All combustion appliance flues will be terminated to the exterior of the house and terminations will maintain proper clearance above snow loads

A distance no less than 2" will be maintained between any combustion appliance flue and combustible materials, unless zero clearance flue is in place

All ventilation systems will maintain a continuous connection and terminate to the outdoors

All broken mushroom vents will be replaced or removed and sealed

All plumbing stacks will be terminated to the outdoors

Non-IC rated light fixtures will be replaced with airtight IC-rated fixtures, if feasible and only when installed measures will compromise the fire rating of the fixture

All recessed lights will be labeled as having an air leakage rate no more than 2.0 CFM when tested in accordance with ASTM E 283 at a 75 pascals pressure differential

All obvious ceiling penetrations will be sealed

The space between combustion appliance flues and the ceiling will be sealed with fire-rated materials

All roof, attic, and ceiling assemblies will be structurally sound:
• Loose ceiling panels will be secured
• Temporary ceiling bracing will be recommended while installing installation

Dishing and pooling issues that allow standing water will be addressed

All known roof water leaks will be repaired before installing installation

Objective(s):

Ensure occupant and worker safety

Verify attic space is ready to insulate

Ensure structural integrity of the roof and ceiling assembly

Prevent intrusion of bulk moisture

Prevent damage while installing insulation

Best Practice

90+ flue terminates above the snow line and penetrations have been sealed.

Flue penetrations have been sealed correctly from the interior.

Plumbing stacks must be terminated to the outdoors.

Dishing and pooling issues must be addressed.

Mushroom vents must be replaced, or removed and sealed.
Proper clearance to combustibles will be maintained through the roof assembly.

Inspect ceiling for weakness, leaks, clearance to combustibles, loose panels, and penetrations.

4.1003.10b - Construction prep

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
Special precautions will be taken to limit fiberglass and construction dust exposure to the occupant and occupant belongings

Objective(s):
Protect occupant health and safety

Protect occupant belongings

Bad Practice
Improperly prepared workspace with cellulose all over client belongings and bedroom

Best Practice
Worker has removed or covered occupant belongings. Be sure to ask permission before removing any client belongings
4.1003.10c - Attic access

Tools:
1. Utility knife

Materials:
1. Plastic sheeting
2. Removable, low-residue tape

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
Equidistant holes will be drilled in a straight row parallel to the longitudinal exterior wall of the ceiling

If a longitudinal ceiling trim piece exists, trim piece will be removed and holes will be drilled behind the trim

Hole location and size will be placed to provide access to allow for consistent and uniform coverage of installed insulation throughout the attic assembly

There will be, at a minimum, one hole between each roof truss

Holes will be large enough to accommodate the chosen fill tube without damaging the ceiling material during installation

If a vapor barrier or ceiling-mounted insulation is present, access will be gained through them

Attic will be visually inspected for the location of existing insulation, obstructions, hazards, and construction type

Objective(s):
Create access to the full attic cavity

Determine insulation installation technique

Prevent damage to ceiling

Create a professionally finished ceiling
Holes are drilled in such a fashion that they allow uniform coverage of attic insulation.

Tools:
1. holesaw bit
2. drill
3. borescope
4. camera

Materials:
1. protective plastic

In Progress

Hole is the proper size in relation to the fill tube.

4.1003.10d - Blowing machine set up

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
Blowing machine pressure test will be performed with air on full, feed off, and gate closed

Hose outlet pressure will be set in accordance with manufacturer specifications

Objective(s):
Ensure machine is capable of delivering uniform insulation density and coverage
Best Practice

Before loading insulation, check that machine is operating properly and set up on a dry, level surface near power source

Best Practice

Test insulation blowing machine's pressure to ensure it is operating within manufacturer's parameters

Tools:
1. Pressure gauge
2. Hex wrench

1. Check electrical connections before operation
2. Make sure feed is off for testing and gate is closed
3. Adjust blower to full, or maximum
4. Using pressure gauge at feed outlet, verify that machine is working within
5. If testing shows machine is operating properly, attach hose and tighten
6. Open gate to allow for feed of insulation, turn on feed
4.1003.10e - Fiberglass blown insulation installation

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
Insulation will be installed to a density of 1.5 to 1.6 pounds per cubic foot

Using fill tube, 100% of each cavity will be filled to a consistent density

Fill tube will be inserted within 6" of the end of each attic cavity

Insulation will be installed into the void of the attic cavity:

- If existing insulation is roof-mounted, insulation will be blown below
- If existing insulation is ceiling-mounted, insulation will be blown above
- If existing insulation is mounted at both locations, insulation will be blown in between

Flame spread and smoke-developed index for insulation will be a flame spread rating of 25 or less and a smoke development rating of 450 or less when tested in accordance with ASTM E84

Objective(s):
Fill entire attic cavity to the prescribed R-value to reduce air infiltration

Avoid clogging of the cavity and the fill tube

Prevent damage to the ceiling

Fire safety will be maintained
Attic insulation should be consistently installed in each cavity to the edge.

If insulation is roof mounted, blow below it.

If insulation is ceiling mounted, blow above it.

If insulation is mounted at both the ceiling and the roof, blow between it.

Insulation meets ASTM E 84.

4.1003.10f - Patching and sealing holes

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and
unconditioned space

Specification(s):
Holes will be plugged or covered and sealed to be aesthetically pleasing

If existing trim was removed, it will be reinstalled

Objective(s):
Create an airtight seal

Create a visually acceptable ceiling finish

In Progress

Holes should be effectively sealed, as well as aesthetically pleasing.

Tools:
1. color matched plug

Materials:
1. color matched plug

4.1003.10g - Verification of details

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
Installation process will be considered complete when installer has verified that damage has not occurred to the roof or ceiling assemblies during the installation process

Objective(s):
Verify the integrity of the house has been maintained
In Progress
Verify that no damage has been done by the workers. When in doubt, verify with photo documentation.

Best Practice
Document and repair any damage the workers caused.
4.1088.6 - Installing Insulation at Flat and Cathedral Ceiling Transition Wall

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and unconditioned space

4.1088.6a - Insulation installation verification

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
A visual inspection of the highest point of the transition wall will be completed

Access points will be determined from the gable end, roof, ceiling, or interior paneling

Objective(s):
Verify the height and the accessibility of the attic

4.1088.6b - Access attic

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
Attic will be accessed through the location that allows the most efficient and effective insulation coverage

Objective(s):
Gain access to the flat and cathedral ceiling transition wall

4.1088.6c - Blowing

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
Blowing machine pressure test will be performed with air on full, feed off, and gate closed

Insulation will be blown against the transition wall until the wall is covered

Objective(s):
Ensure machine is capable of delivering uniform insulation density and coverage to meet manufacturer specifications for loose blown insulation

Create a thermal barrier at the transition wall

1. **Best Practice**
 - Before loading insulation, check that machine is operating properly and set up on a dry, level surface near power source

2. **Best Practice**
 - Test insulation blowing machine's pressure to ensure it is operating within manufacturer's parameters.

3. Check electrical connections before operation.

4. Make sure feed is off for testing and gate is closed.

5. Adjust blower to full, or maximum.
Using pressure gauge at feed outlet, verify that machine is working within manufacturer's specifications.

If testing shows machine is operating properly, attach hose and tighten fitting to minimize slippage.

Open gate to allow for feed of insulation, turn on feed.

4.1088.6d - Spray two-part foam

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
Insulation will be installed to prescribed R-value in accordance with manufacturer specifications

Spray polyurethane foam (SPF) will be applied to desired thickness, using pass thickness maximum as indicated by manufacturer

Objective(s):
Insulate and seal transition wall

4.1088.6e - Batt

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
Batt insulation will be installed in accordance with manufacturer specifications without gaps, voids, compressions, misalignments, or wind intrusions

Insulation will be installed to the prescribed R-value
Vapor barrier will be installed based on regional considerations

Objective(s):
Insulate to prescribed R-value

4.1088.6f - Patching and sealing access points

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
Created access points will be covered and sealed in an aesthetically pleasing manner

Existing access points (e.g., gable vent) will be returned to the original condition

If existing trim was removed, it will be reinstalled

Objective(s):
Create an airtight seal

Create an aesthetically pleasing finish

4.1088.6g - Verification of details

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
Installation process will be considered complete when installer has verified that damage has not occurred to the roof or ceiling assemblies during the installation process

Objective(s):
Verify the integrity of the house has been maintained
Verify that no damage has been done by the workers. When in doubt, verify with photo documentation.

4.1088.6h - Onsite Documentation

Desired Outcome:
Consistent, uniform thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
A dated receipt signed by the installer will be provided that includes:

- Insulation type
- Coverage area
- R-value
 - Installed thickness and settled thickness (settled thickness required for loose-fill only)
 - Number of bags installed in accordance with manufacturer specifications (for loose-fill only)

Objective(s):
Document job completion to contract specifications
Confirm amount of insulation installed
Comply with 16 CFR 460.17
4.1104.1 - Stuffing Wall Cavities with Fiberglass Batts

Desired Outcome:
Consistent thermal boundary and air barrier between the conditioned space and unconditioned space

4.1104.1a - Access wall cavities

Desired Outcome:
Consistent thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
If skirting overlaps siding, skirting will be detached to allow access to the wall cavity

Fasteners will be removed from the bottom of the siding, working upward until the siding can be pulled away from the framing approximately 6" without damaging the siding

Temporary fasteners will be installed near the bottom of the siding panels at the seams to prevent separation

If a subsheathing is present under the siding, access through the subsheathing will be required

Objective(s):
Gain access to the wall cavity without damaging or separating the siding

Remove fasteners from along bottom and side seams to access wall cavity

Remove enough fasteners to create at least a 6in gap without damaging siding
Tools:
1. Drill

If skirting overlaps siding, remove skirting

Temporarily fasten siding panels at joint to hold seam together

Seam should remain together with temporary fastener

4.1104.1b - Exterior wall cavity inspection

Desired Outcome:
Consistent thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
Wall cavities will be inspected for moisture damage, pest locations, and integrity of the wiring, and holes to the interior

Siding will be repaired as necessary

Location of belt rails, obstructions, and existing insulation will be identified

All interior surfaces of exterior walls will be inspected for loose paneling joints, occupant wall hangings, location of switches and outlets, and other wall obstructions

Objects will be removed from the interior surfaces of the walls being insulated

Interior paneling will be repaired as necessary

Objective(s):
Prepare wall cavity for insulation

Prevent water leaks from occurring
Take note of obstacles in the wall cavity, such as belt rails and electrical wiring.

Tools:
1. Drill
2. Utility knife
3. Taping knife
4. Caulk gun

Materials:
1. Spackle
2. Metal siding patch
3. Caulk
4. Fasteners

Obstacles should be noted and planned for; insulation should be tucked behind belt rails.

Holes in exterior siding should be patched.

Apply sealant to back of patch to maintain air barrier.
4.1104.1c - Fiberglass batt installation tool (stuffer)

Desired Outcome:
Consistent thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
A sheet of polycarbonate, such as Lexan, will be cut to the following specifications to create a stuffer tool:

- Approximately 1' x 8' x ¼” with a 5 degree bend 7' ½" from the bottom
- All corners of the Lexan (polycarbonate) will be rounded and all edges will be sanded

Other clear sheet plastics will not be used due to a tendency to shatter under stress

Objective(s):
Create a tool to install a fiberglass batt into the cavity

Ensure worker safety

Best Practice
Insulation stuffing tool should be made of 1/4" polycarbonate, cut to 1' wide and 8' long

Best Practice
At one end, a bend of 5 degrees (175 degree supplement) should be made 7 1/2" from narrow edge
Tools:
1. Tape measure
2. Table saw with fine-toothed blade
3. Sander
4. Heat gun
5. Clamp
6. Protractor
7. Heat-resistant gloves

Materials:
1. Polycarbonate, like Lexan
2. Sandpaper

Most crews should have this tool in their supply. If one needs to be fabricated, find someone who has worked with polycarbonate before and ensure correct tool usage as well as proper PPE during fabrication.

4.1104.1d - Fiberglass batt installation

Desired Outcome:
Consistent thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
- Thickness of the batt will fill the void without deforming siding or damaging structure
- Fiberglass batts will fill the cavity (e.g., batt may be cut approximately 1” longer to ensure proper fill and allow for lap at the top)
- Flexible membrane will have an appropriate perm rating for the region
- Flexible membrane will be cut 2” wider than the cavity and approximately 1’ longer than the batt
- Stuffer tool, membrane, and fiberglass batt will be aligned for installation
- Stuffer tool will be used to install the fiberglass batt and membrane at the same time
- Excess fiberglass batt and membrane vapor retarder extending below the cavity will be rolled and tucked into the cavity
- A poly-encased fiberglass batt may be used in place of the fiberglass batt and membrane assembly
- The membrane will be installed in contact with the side of the wall that is compatible with the local climate zone

Objective(s):
Maintain integrity of the batt
Aid in the installation process

Uninsulated and underinsulated wall cavities can be filled from the exterior with fiberglass batts.

Fiberglass batt should fill entire cavity without creating bulging in exterior paneling.

Tools:
1. Tape measure
2. Utility knife

Materials:
1. Fiberglass batts, may be wrapped
2. Vapor barrier appropriate for region

Uninsulated wall cavity can be accessed from exterior of mobile home through paneling.

Measure length of cavity

Measure depth of cavity
Select appropriate batt thickness and R-value. Wrapped batts provide a built in vapor barrier.

Measure batt to length of cavity with extra for overlap from stuffing tool.

Lap cut batt over bent end of stuffing tool.

Beginning with lapped end, tuck batt under top belt rail and stuff batt up to top of cavity. Remove stuffing tool.

Tuck bottom of batt behind bottom belt rail. If longer than cavity, cut to within 1" longer, roll and tuck into cavity.

4.1104.1e - Sub-sheathing patch and repair

Desired Outcome:
Consistent thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
Subsheathing will be patched or repaired as necessary

Objective(s):
Ensure the integrity of the drainage plane

4.1104.1f - Reattachment

Desired Outcome:
Consistent thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
If skirting was removed, skirting will be reinstalled to shed water to the outside of the skirting

Siding will be reattached with new fasteners

Siding will be reattached without bulges or wrinkles

Objective(s):
Ensure the integrity of the drainage plane

Return siding to existing conditions without damage

In Progress
After wall cavities have been stuffed, paneling needs to be put back into place and refastened

Materials:

1. Fasteners

Tools:

1. Drill

After
Once work is finished, reattach siding and skirting, ensuring neither have been damaged
Using new fasteners, reattach paneling

Reinstall skirting, if necessary

Reattach trim, if necessary

Verify that siding and skirting have not been damaged and show no signs of bulging

4.1104.1g - Onsite documentation

Desired Outcome:
Consistent thermal boundary and air barrier between the conditioned space and unconditioned space

Specification(s):
A dated receipt signed by the installer will be provided that includes:

- Coverage area
- Thickness
- R-value

Objective(s):
Document job completion to contract specifications

Confirm amount of insulation installed

Comply with 16 CFR 460.17
4.1303.1 - Insulation of Floor Cavity with Blown Material

Desired Outcome:
Consistent thermal boundary between conditioned and unconditioned space that reduces heat flow

4.1303.1a - R-value

Desired Outcome:
Consistent thermal boundary between conditioned and unconditioned space that reduces heat flow

Specification(s):
Insulation will be installed in accordance with recommended R-value and density

Objective(s):
Insulate to prescribed R-value for the climate zone

Best Practice
Consult density chart on insulation packaging to determine proper insulation application to achieve prescribed R-value

4.1303.1b - Work assessment

Desired Outcome:
Consistent thermal boundary between conditioned and unconditioned space that reduces heat flow

Specification(s):
Road and rodent barrier must be intact and free from holes and capable of supporting the insulation

Objective(s):
Ensure bottom board is intact

Ensure insulation is supported

Protect cavity from infestation

4.1303.1c - Insulate floors

Desired Outcome:
Consistent thermal boundary between conditioned and unconditioned space that reduces heat flow

Specification(s):
Each cavity will be insulated to specified R-value and density

The number of bags installed will be confirmed and will match the number required on the coverage chart

Objective(s):
Eliminate voids and settling

4.1303.1d - Materials

Desired Outcome:
Consistent thermal boundary between conditioned and unconditioned space that reduces heat flow

Specification(s):
Flame spread index of selected materials will not exceed 25 with an accompanying smoke-developed index not to exceed 450 when tested in accordance with ASTM E84 or UL 723

Flame spread index of foam insulation will not exceed 75 and a smoke-developed index of no more than 450 when tested in the maximum thickness intended for use in accordance with ASTM E84 or UL 723

Foam insulation will be separated from the interior of the building by an approved thermal barrier at a minimum of 1/2" gypsum or a material that is tested in accordance with the acceptance criteria of both the Temperature Transmission Fire Test and the Integrity Fire Test of NFPA 275

Selected material will be of minimal water absorbency

Selected material will be noncorrosive
Objective(s):
Ensure durability
Prevent moisture damage
Fire safety will be maintained

4.1303.1e - Occupant education

Desired Outcome:
Consistent thermal boundary between conditioned and unconditioned space that reduces heat flow

Specification(s):
A dated receipt signed by the installer will be provided that includes:

• Insulation type
• Coverage area
• R-value
• Installed thickness and minimum settled thickness
• Number of bags installed in accordance with manufacturer specifications

Objective(s):
Document job completion to contract specifications
Confirm amount of insulation installed
Ensure ability to match bags required for total area completed
Comply with 16 CFR 460.17
Best Practice

Provide occupant with signed, dated receipt documenting information about insulation installed.

Documentation should include insulation material and r-value.

Provide occupant with copies of all documentation.

Communicate professionally with occupant to provide information and support.
4.1303.2 - Insulation of Floor Cavity with Batt Material

Desired Outcome:
Consistent thermal boundary between conditioned and unconditioned space that reduces heat flow

4.1303.2a - R-value

Desired Outcome:
Consistent thermal boundary between conditioned and unconditioned space that reduces heat flow

Specification(s):
Insulation will be installed in accordance with recommended R-value and density

Objective(s):
Insulate to prescribed R-value for the climate zone

Best Practice
Review work order and verify that proper R-value and thickness of batt is being used

Proper r-value is determined by climate zone, and should be listed in work order

Materials:
1. Fiberglass batts

4.1303.2b - Work assessment

Desired Outcome:
Consistent thermal boundary between conditioned and unconditioned space that reduces heat flow

Specification(s):
Ensure complete accessibility of floor cavity

Clean floor cavities

Remove all remnants of previous insulation and bottom board

Objective(s):
Ensure work area is clean, safe, and ready to accept insulation

Tools:
1. Utility knife

Desired Outcome:
Consistent thermal boundary between conditioned and unconditioned space that reduces heat flow

Specification(s):
Each cavity will be insulated to specified R-value and density

If insulation has facing, facing will be in contact with the heated side

Insulation will be in contact with subfloor

Insulation will not have gaps, voids, or be compressed

Insulation will be supported (e.g., metal insulation supports) to maintain a permanent contact with subfloor

Insulation will be notched around all wires, pipes, and blocks

Ducts and water lines will be insulated for climate conditions

Water lines will be located above the warm side of the insulation (toward the conditioned space), when feasible

A rigid air barrier will be installed in contact with the bottom of the joists, when feasible

Rigid air barrier will be fastened as to not sag, bend, or fall off

Seams, holes, and joints in the air barrier will be sealed

In cases where HVAC ducts hang below the level of the rigid air barrier and insulation, the ducts will be insulated and air barrier provided that is sealed to the rigid air barrier

Objective(s):

Eliminate voids

Minimize conductive heat transfer across the floor system

Ensure durability

Minimize convective heat transfer

Keep pipes from freezing
Uninsulated floors over unconditioned spaces are an energy drain

Before

After

In addition to fiberglass batt insulation, a rigid air barrier will be sealed and mechanically fastened in place.

Tools:

1. Utility knife
2. Tape measure
3. Metal snips
4. Drill
5. Caulk gun

Materials:

1. Fiberglass batts, may be kraft-faced
2. Metal tape
3. Insulation supports (lightning rods)
4. Fasteners
5. Caulk
6. Duct insulation

If fiberglass insulation is kraft-faced, ensure kraft is in contact with subfloor.

Notch insulation around pipes, blocks, and other obstructions.

To prevent insulation from moving away from subfloor, supports should be fastened in place.
A rigid air barrier should be securely in place so prevent sagging, gaps and penetrations should be sealed

When ductwork or water pipes run below joists, insulation should be threaded above to fill joist cavity, uncompressed

Water lines and ducts should be insulated if running below joists

A rigid air barrier should be mechanically fastened to hold it tight against the floor joists

When insulating around low-hanging ducts and water pipes, run a line of sealant before placing insulation

Insulation around ducting should be securely fastened and sealed to maintain air barrier

4.1303.2d - Materials

Desired Outcome:
Consistent thermal boundary between conditioned and unconditioned space that reduces heat flow

Specification(s):
Insulation materials will be of minimal water absorbency and flame spread, and smoke-developed index for insulation will be in accordance with IRC

Foam plastic insulation will comply with IRC

Fasteners will be corrosion resistant

Objective(s):
Ensure durability

Prevent moisture damage
Bad Practice
Do not use absorbent insulation material, such as cellulose, in the floor cavity

Best Practice
Fiberglass batts are a good choice for insulating floor cavities

Materials:
1. XPS insulation board
2. Fiberglass batts
3. Corrosion resistant exterior screws

XPS insulation board is a non-absorbent insulation option
XPS (extruded polystyrene) is safe for use in floor cavities
Do not use EPS (expanded polystyrene) foam board in floor cavities due to flame spread rate

Use only corrosion resistant, exterior
screws as fasteners in floor cavities

4.1303.2e - Occupant education

Desired Outcome:
Consistent thermal boundary between conditioned and unconditioned space that reduces heat flow

Specification(s):
A dated receipt signed by the installer will be provided that includes:

- Coverage area
- Thickness
- R-value

Objective(s):
Document job completion to contract specifications

Confirm amount of insulation installed

Comply with 16 CFR 460.17

Best Practice
Provide occupant with signed, dated receipt documenting information about insulation installed
Documentation should include insulation material and r-value

Provide occupant with copies of all documentation

Communicate professionally with occupant to provide information and support
4.1402.2 - Basement Wall Insulation—No Groundwater Leakage

Desired Outcome:
Basement insulation improves thermal performance and ensures sufficient drying potential

4.1402.2a - R-value

Desired Outcome:
Basement insulation improves thermal performance and ensures sufficient drying potential

Specification(s):
Regional IECC will be followed for required R-values

Objective(s):
Improve thermal performance of the basement and living space

Best Practice
Find your regional zone and insulation application to determine r-value

4.1402.2b - Air barrier

Desired Outcome:
Basement insulation improves thermal performance and ensures sufficient drying potential

Specification(s):
A continuous air barrier will be installed on the warm side of the insulation

Objective(s):
Prevent condensation on the basement wall
Before Basement shows no sign of ground water penetration, but needs insulation

After Insulation and drywall create an air barrier

Tools:
1. Utility knife
2. Tape measure
3. Drill
4. Taping knife

Materials:
1. XPS insulation board
2. Kraft-faced fiberglass batts
3. Drywall
4. Spackle
5. Seam tape
6. Fasteners

XPS insulation board is a non-absorbent insulation option

The drywall still provides an air barrier to keep moisture build up on wall

OR Kraft-faced fiberglass batts can be used with paper toward living space
Both kraft-face and drywall create air barrier, but batts are absorbent

4.1402.2c - Vapor permeability

Desired Outcome:
Basement insulation improves thermal performance and ensures sufficient drying potential

Specification(s):
When absorbent insulation materials are installed, assembly will remain vapor semi-impermeable to the interior in all climate zones except Zone 7

Objective(s):
Provide drying potential to the basement

Kraft-faced fiberglass insulation is absorbent

Drywall typically has a perm rating of 50--good for zones 1-6
Tools:
1. Utility knife
2. Tape measure
3. Drill
4. Taping knife

Materials:
1. XPS insulation board
2. Drywall
3. Kraft-faced fiberglass batts
4. Spackle
5. Seam tape
6. Fasteners

The higher a material's perm rating, the more vapor can pass through said material. Drywall typically has a perm rating of approximately 50.

In zones 7 & 8 (AK, parts of MN, ND, WI, MI, WY, CO, and ME), vapor retarders should be used to minimize freezing. For vapor retarders in basements and crawl spaces, SWS calls for materials with a perm rating of <0.5 (which translates to 4mil or thicker). From 2007 IRC definition of vapor retarders:
Class I: ≤ 0.1 perm (called impermeable), Class II: 0.1 to 1.0 perm (called semi-impermeable), Class III: 1.0 perm to 10 perms (called semi-permeable).

Determine in which zone you are working before selecting work materials.

Many light-weight drywall brands have higher perm ratings for humid zones.

In zones 7&8, vapor permeability is undesirable. Use a vapor retarder.
4.1488.1 - Climate Considerations for Insulating Water Lines Located Between Bottom Board and Ground

Desired Outcome:
Water supply line does not freeze in cold climates

Note:

4.1488.1a - Work assessment

Desired Outcome:
Water supply line does not freeze in cold climates

Specification(s):
Installer prework assessment will be conducted to determine:

- Water leaks do not exist
- Accessibility

Water leaks will be repaired before installation

Objective(s):
Verify scope of work
Ensure that work space is safe and ready for work

4.1488.1b - Installation

Desired Outcome:
Water supply line does not freeze in cold climates

Specification(s):
Pipe freeze protection system will have thermostatic heat control and circuit protection
Insulation will be installed over pipe freeze protection system when necessary
Pipe will be protected from wind

Objective(s):
Ensure fire safety
Protect supply pipe from freezing

In Progress

Properly installed freeze protection heat tape

Materials:
1. Heat tape
2. Zip ties (to attach thermostat)
3. Electrical tape
4. 1/2" thick fiberglass insulation

To prevent pipe freezing and reduce the risk of fire, follow manufacturer's instructions carefully. Choose the proper length heat tape for the pipe to be protected. When using multiple lengths of heat tape on long pipes, start subsequent runs of heat tape one foot before the end of the previous run on opposite sides of the pipe. Never overlap or cross heat tape with itself. Complete heat tape installation instructions may be found here: https://www.foremost.com/mygreathome/mobile-home-repair/seasonal/how-to-install-heat-tape.asp

Tools:
1. Utility knife
2. Rags

1. Install thermostat in firm contact with the pipe at the coldest point
2. Fasten heat tape to pipe with electrical tape every six inches.
3. Measure and cut insulation to fit water lines. Miter insulation at elbows and tees
Fasten insulation to water lines with zip ties

Cover all exposed portions of the water supply lines with insulation

4.1488.1c - Occupant education

Desired Outcome:
Water supply line does not freeze in cold climates

Specification(s):
Occupants will be educated on efficient and safe operation and maintenance of heat tape

Objective(s):
Ensure safe and durable protection of water line

Best Practice
Educate occupant on effective and safe use of heat tape

Materials:
1. Heat tape manufacturer’s operating instructions

A good guide for homeowner education may be found here:
4.1601.3 - Insulation and Vapor Barrier

Desired Outcome:
Minimize condensation

Note:

4.1601.3a - Ducts in unconditioned spaces (e.g., crawl space, attic, unconditioned basements)

Desired Outcome:
Minimize condensation

Specification(s):
Ducts will have continuous insulation and vapor barrier

Insulation will be sufficient to prevent dew point on surface of ducts

Objective(s):
Minimize condensation

Materials:
1. Pipe wrap
2. Seam tape
3. Tie bands
4.1601.3b - Ducts within floor assemblies

Desired Outcome:
Minimize condensation

Specification(s):
Inspection and/or testing will be conducted to determine whether ducts are within thermal, pressure, and vapor boundary

If ducts are within thermal, pressure, and vapor boundary, no action will be required

If ducts are not within thermal, pressure, and vapor boundary, continuous air barrier, insulation, and vapor retarder will be installed either on the ducts or at the belly liner

Objective(s):
Minimize condensation

Test duct performance using pressure pan or duct blaster to determine whether ducts align with the thermal boundary.

Best Practice

Insulate and seal as necessary based on diagnostic testing and inspection, to limit condensation.

Best Practice

4.1601.3c - Exposed metal

Desired Outcome:
Minimize condensation

Specification(s):
All exposed metal will have continuous insulation and vapor retarder

Objective(s):
Minimize condensation
Best Practice

Repair holes in belly which would expose metal components to potential condensation

Best Practice

Metal components that extend beyond the belly must be insulated and have a vapor barrier
4.1601.4 - Insulating Flex Ducts

Desired Outcome:
Lower conductive heat transfer by ducts and decrease condensation on duct vapor barrier

Note:

4.1601.4a - Removal of existing flexible ducting

Desired Outcome:
Lower conductive heat transfer by ducts and decrease condensation on duct vapor barrier

Specification(s):
All accessible low R-value flexible ducting will be removed from premises

Objective(s):
Ensure installation of proper R-value ducts

Before
Remove existing flex duct that does not meet the requirement of R-8.0

Best Practice
Replace with ducting insulated to a minimum of R-8

4.1601.4b - Selection of new flexible ducting

Desired Outcome:
Lower conductive heat transfer by ducts and decrease condensation on duct vapor barrier

Specification(s):
All flexible ducting will have a minimum of R-8
Objective(s):
Minimize thermal conductance through the duct system

Tools:
1. Tie band tensioner

Materials:
1. Flex duct, min R-8

4.1601.4c - Sizing of new flex

Desired Outcome:
Lower conductive heat transfer by ducts and decrease condensation on duct vapor barrier

Specification(s):
Duct-sizing procedures will be conducted when replacing flex duct

Objective(s):
Improve comfort in rooms
Improve fan performance
Best Practice

Ducts should be sized according to how much airflow is needed for a room.

Tools:

1. Duct-u-lator or ACCA equivalent

4.1601.4d - Installation of flex

Desired Outcome:
Lower conductive heat transfer by ducts and decrease condensation on duct vapor barrier

Specification(s):
Flex duct will be supported in accordance with flex duct manufacturer’s directions or local codes

Beaded rigid elbow or equivalent will be installed in duct runs whenever change in direction is required

Objective(s):
Prevent sags, drops, or other bends that may interfere with correct air flow

Maintain duct diameter around the turns

Maximize air flow and distribution
Straps should be at least 1.5" wide.

Materials:
1. 1.5" webbing or strap material

Elbows are required when a change in direction is needed.

4.1601.4e - Interior liner attachment

Desired Outcome:
Lower conductive heat transfer by ducts and decrease condensation on duct vapor barrier

Specification(s):
Interior liner of the flex-to-metal connection will be fastened with tie bands using a tie band tensioning tool

For oval flexible duct-to-metal connections, tie bands cannot be used; appropriate mechanical fasteners will be used

Objective(s):
Create a strong, secure attachment
Before
Duct liner has been sealed, but tie band has not been installed.

After
Liner has been securely fastened with tie band tensioning tool.

Tools:
1. tie band tensioning tool

Materials:
1. tie band

4.1601.4f - Sealing of interior liner

Desired Outcome:
Lower conductive heat transfer by ducts and decrease condensation on duct vapor barrier

Specification(s):
UL 181 B-M-listed mastic product will be used to seal the connection

Objective(s):
Create an airtight connection

Best Practice
Using a product like the mastic shown here results in an airtight connection
Materials:
1. UL 181 B-M listed mastic product

4.1601.4g - Attachment of exterior liner

Desired Outcome:
Lower conductive heat transfer by ducts and decrease condensation on duct vapor barrier

Specification(s):
Liner will be pulled up onto the metal duct as far as possible before securing
The exterior liner of the flex duct will be fastened with tie bands using a tie band tensioning tool

Objective(s):
Create a strong, durable attachment

Tools:
1. tie band tensioning tool

Materials:
1. tie band

In Progress
Pull the outer liner so that all exposed surfaces are covered.

After
Duct is properly secured with a trimmed tie band.
4.1601.4h - Sealing of all accessible ducts

Desired Outcome:
Lower conductive heat transfer by ducts and decrease condensation on duct vapor barrier

Specification(s):
All accessible joints, seams, and connections will be sealed with UL 181 approved mastics

Objective(s):
Minimize duct leakage

Here the technician is inspecting work in progress, ensuring a good seal.

Tools:
1. inspection mirror

Materials:
1. mastic
2. duct boot

4.1601.4i - Insulation of all fittings

Desired Outcome:
Lower conductive heat transfer by ducts and decrease condensation on duct vapor barrier

Specification(s):
All metal fittings, including boots, elbows, and takeoffs, will be insulated separately using a minimum of R-8 duct wrap with a vapor barrier mechanically fastened (e.g., stitch staples, tie bands) and
sealed with no exposed metal

Objective(s):
Minimize thermal conductance of the duct system
Minimize condensation

![Before](image1)
This elbow has been sealed, but is not insulated.

![After](image2)
Fitting has been sealed and properly insulated.

4.1601.4j - Completeness of vapor barrier

Desired Outcome:
Lower conductive heat transfer by ducts and decrease condensation on duct vapor barrier

Specification(s):
Vapor barrier of all duct insulation will be taped to the flex duct using the taping system required by the manufacturer of the duct insulation

Vapor barrier will be sealed to the belly liner

Objective(s):
Ensure a complete vapor barrier
After Crossover duct with vapor barrier mended and sealed to manufactured home belly

Tools:
1. Reusable spray foam gun
2. Utility knife
3. Scissors
4. Outward clinching (stitch) stapler

Materials:
1. UL-181 B-M foil or Mylar tape
2. Foam sealant
3. Staples

Clean vapor barrier thoroughly before applying UL 181B Mylar tape to cuts and seams. Repair belly if necessary, and use foam sealant to seal the vapor barrier to the belly.

4.1601.4k - Vermin proofing

Desired Outcome:
Lower conductive heat transfer by ducts and decrease condensation on duct vapor barrier

Specification(s):
Vermin access points will be identified and treated appropriately (e.g., seal access holes)

Objective(s):
Ensure long-term durability of the building materials
Flexible ducts are susceptible to vermin entry.

After
Flex that has been damaged by vermin entry must be replaced or repaired.

4.1601.4l - CAZ testing

Desired Outcome:
Lower conductive heat transfer by ducts and decrease condensation on duct vapor barrier

Specification(s):
CAZ testing will be performed where combustion appliances are utilized

Objective(s):
Identify unsafe equipment operating conditions

See SWS 2.0201.1 and SWS 2.0201.3 for CAZ testing

Best Practice
Complete combustion appliance zone testing to ensure a healthy, safe environment
Tools:
1. Manometer
2. Mirror
3. Chemical smoke pencil
4. Stopwatch or watch with second hand
5. Gas leak detector
6. Combustion analyzer
7. 1/4" air line tubing

At the end of each day in which duct sealing or repair is performed, conduct Combustion Appliance Zone (CAZ) testing in accordance with the NREL Manufactured Home Standard Work Specifications, details 2.0201.1 and 2.0201.3.
4.1601.5 - Insulating Metal Ducts

Desired Outcome:
Lowered thermal conductance of duct system and minimized condensation on the duct system

Note:

4.1601.5a - Selection of duct insulation material

Desired Outcome:
Lowered thermal conductance of duct system and minimized condensation on the duct system

Specification(s):
Duct insulation will be a minimum of R-8, in accordance with local code or buried under attic insulation, whichever is a greater R-value, and have an attached and continuous vapor barrier

Hot humid and warm coastal regions will not bury ducts

Objective(s):
Decrease heat loss and condensation problems

Before
Uninsulated ducts in unconditioned spaces are an energy drain

After
Properly insulated ducts operate at much higher rates of efficiency
Ducts in unconditioned areas should have r-8 insulation with vapor barrier OR ducts can be buried in loose fill in attic spaces in drier climates Burying ducts is discouraged in warm coastal and hot humid regions

4.1601.5b - Duct sealing

Desired Outcome:
Lowered thermal conductance of duct system and minimized condensation on the duct system

Specification(s):
All accessible ducts will be sealed with a UL-181 mastic before insulation is applied

Objective(s):
Minimize duct leakage

Tools:
1. Putty knife

Materials:
1. UL-181 mastic
2. Fiberglass mesh tape
4.1601.5c - Attachment of duct insulation

Desired Outcome:
Lowered thermal conductance of duct system and minimized condensation on the duct system

Specification(s):
Duct insulation will be mechanically fastened (e.g., stitch staples, tie bands) and sealed with no exposed metal

Duct insulation will be secured to the duct system using metal wire or rot-proof nylon twine

Pattern of the wire or twine will be sufficient to securely hold the duct insulation tight to the duct

Mechanical fastening will be sufficient to securely hold the duct insulation in place and tight to the duct

Objective(s):
Ensure a secure connection between the duct system and the duct insulation

Ensure performance of the installed material

Minimize condensation
Before

Materials holding insulation in place should not compress or kink duct

After

Durable materials can be attached without compressing insulation

Tools:
1. Scissors
2. Metal snips

Materials:
1. Nylon twine
2. Wire
3. Tie bands

4.1601.5d - Taping of the vapor barrier

Desired Outcome:
Lowered thermal conductance of duct system and minimized condensation on the duct system

Specification(s):
Using a tape approved by the manufacturer, all seams and connection of the vapor barrier will be taped so that no metal is exposed

No gaps will exist between pieces of duct insulation

Objective(s):
Prevent gaps in the vapor barrier of the insulation
Unsecured and sealed insulation around ducts is useless

All seams should be sealed with UL-181 duct tape to preserve vapor barrier

Tools:
1. Utility knife

Materials:
1. UL-181 tape
2. R-8 duct insulation with vapor barrier

4.1601.5e - Vermin proofing

Desired Outcome:
Lowered thermal conductance of duct system and minimized condensation on the duct system

Specification(s):
Vermin access points will be identified and treated appropriately (e.g., seal access holes)

Objective(s):
Ensure long-term durability of the building materials

Holes in air barrier should be patched to deter vermin

Ensure that patch is well sealed and securely fastened
Holes in ducting should be patched to discourage vermin.

Holes in belly air barriers allow vermin access to insulation and ducting.

Use adhesive patch to air seal.

Stitch staple patch to securely fasten physical barrier.

Stitch staples bend outward to hold in place for the long-term.

Holes in exterior walls are another point of vermin entry.

Apply sealant to back of patch to maintain air barrier.

Flex patch to contour to wall.

Securely fasten patch in place with screws and apply addition sealant to deter water.
5.3001.3 - Replace Return Air Systems that Incorporate Floor Cavity (Belly) and/or Attic as the Return Air Pathway

Desired Outcome:
Effective, efficient, safe, and durable return air system

Note:

5.3001.3a - Close return air openings

Desired Outcome:
Effective, efficient, safe, and durable return air system

Specification(s):
Existing return air openings will be closed off and sealed with a durable material equivalent in strength to the surrounding material

Disturbed materials suspected to contain asbestos or lead content will be assessed and removed in accordance with EPA regulations

Objective(s):
Minimize air leakage

Improve indoor environmental quality

Ensure safe and legal renovation

5.3001.3b - Alternate return air system

Desired Outcome:
Effective, efficient, safe, and durable return air system

Specification(s):
Alternate return air opening will be provided to the furnace closet (e.g., replace louvered door or install grilles); whenever possible, follow manufacturer specifications for amount needed

Return duct design will be in accordance with ANSI/ACCA 1 Manual D Residential Duct Systems

A continuous and adequate return air pathway to the air handler will be installed
Objective(s):
Ensure sufficient return air is provided to the system

5.3001.3c - Zone pressure test

Desired Outcome:
Effective, efficient, safe, and durable return air system

Specification(s):
Pressures will be measured with the furnace fan operating across interior doors that can be closed and have a supply and/or return behind them

Rooms should not exceed 3 pascals of pressure

Pressure testing will be performed with all interior doors closed and the air handler running

Objective(s):
Ensure sufficient return air is provided to the system

Minimize moisture intrusion from negative pressures

Improve indoor air quality

Tools:
1. Manometer
2. Reference hose

Best Practice
With reference hose under closed interior door, test zonal pressure in rooms throughout house

In Progress
Zonal pressure differential should be between 3pa and -3pa (e.g., 0 is good, +/-4 is not acceptable)
5.3001.3d - Combustion Appliance Zone (CAZ) testing

Desired Outcome:
Effective, efficient, safe, and durable return air system

Specification(s):
CAZ testing will be performed where combustion appliances are utilized

Objective(s):
Identify unsafe equipment operating conditions

Best Practice
Complete combustion appliance zone testing to ensure a healthy, safe environment

Tools:
1. Manometer
2. Mirror
3. Chemical smoke pencil
4. Stopwatch or watch with second hand
5. Combustion analyzer
6. 1/4" air line tubing
7. Gas leak detector

At the end of each day in which duct sealing or repair is performed, conduct Combustion Appliance Zone (CAZ) testing in accordance with the NREL Manufactured Home Standard Work Specifications, details 2.0201.1 and 2.0201.3.

5.3001.3e - Occupant education

Desired Outcome:
Effective, efficient, safe, and durable return air system
Specification(s):
Occupant will be educated on changes, how to operate and maintain the system, and any potential health concerns (e.g., lead, asbestos)

Objective(s):
Ensure occupant is educated
5.3003.1 - Data Plate Verification

Desired Outcome:
Data for commissioning and future service work is recorded

5.3003.1a - Data plate verification

Desired Outcome:
Data for commissioning and future service work is recorded

Specification(s):
Equipment will be visually inspected

Information will be recorded from the equipment data plates indoors and outdoors where available

Objective(s):
Ensure technician has equipment data necessary for commissioning and future service work
5.3003.3 - Evaluating Air Flow

Desired Outcome:
Air flow is properly tested

Note:
The authority having jurisdiction may require that a licensed professional perform certain tasks outlined in this detail.

5.3003.3a - Total air flow

Desired Outcome:
Air flow is properly tested

Specification(s):
Total system air flow will be measured by one of the following methods:

- Temperature rise
- Flow plate
- Fan depressurization device (e.g., Duct Blaster®, DucTester®)

Objective(s):
Ensure equipment:

- Operates as designed
- Operates efficiently
- Provides comfort
- Operates safely
- Is durable

5.3003.3b - External static pressure

Desired Outcome:
Air flow is properly tested

Specification(s):
External static pressure will be in accordance with manufacturer specifications

Objective(s):
Ensure equipment:
Desired Outcome:
Air flow is properly tested

Specification(s):
Pressure drop across cooling coils will be in accordance with manufacturer specifications

Objective(s):
Ensure equipment:

- Operates as designed
- Operates efficiently
- Provides comfort
- Operates safely
- Is durable

Best Practice
Pressure drop across the coil should be less than or equal to manufacturer recommendations, generally less than .3" w.c.
Tools:
1. manometer
2. static pressure probes
3. 1/4" hoses

State of Missouri DOE variance 1/29/18: Pressure drop across cooling coils evaluation will be completed by a certified HVAC professional in accordance with manufacturer specifications on new HVAC installs, and during clean and tunes on HVAC units that have cooling coils.

Drill holes being careful not to damage the evaporator coil.
Hook gauges up to measure pressure before and pressure after the coil.
Static pressure probe should be inserted with the tip pointing into the air stream.

Probe placed before the coil.
Probe placed after the coil.
Measure resulting pressure drop of the dry evaporator coil.

5.3003.3d - Filter Inspection

Desired Outcome:
Air flow is properly tested

Specification(s):
Visual inspection to verify filter type is per manufacturer specifications, and is clean
Objective(s):
Ensure equipment:

- Operates as designed
- Operates efficiently
- Provides comfort
- Operates safely
- Is durable

5.3003.3e - Balancing room flow: new ductwork

Desired Outcome:
Air flow is properly tested

Specification(s):
Proper air flow delivery to each room will be ensured by one of the following:

Measuring air flow at each register

OR

Measuring heat rise, room pressures, and interviewing residents to ensure their comfort.

Objective(s):
Ensure equipment:

- Operates as designed
- Operates efficiently
- Provides comfort
- Operates safely
- Is durable

5.3003.3f - Supply wet bulb and dry bulb

Desired Outcome:
Air flow is properly tested

Specification(s):
Supply and return wet bulb (wet bulb temperature is measured for cooling systems only) and dry bulb air temperatures will be recorded
Objective(s):
Ensure equipment:

- Operates as designed
- Operates efficiently
- Provides comfort
- Operates safely
- Is durable

5.3003.3h - Temperature rise: gas and oil furnaces only

Desired Outcome:
Air flow is properly tested

Specification(s):
Temperature rise between the supply and return will be in accordance with manufacturer specifications

Objective(s):
Ensure equipment:

- Operates as designed
- Operates efficiently
- Provides comfort
- Operates safely
- Is durable

Best Practice
Temperature rise should be within the range specified by the manufacturer. If it is not, airflow must be adjusted.
Tools:

1. thermometers

Supply temperature (out of line of sight of the heat exchanger) - return temperature = air temperature rise

e.g. 116.8 - 88.5 = 28.3 which is well outside of the manufacturers recommendations of 45-75. Air speed adjustment is needed.

Measure the temperature inside the combustion closet or the return nearest to the unit.

Return temperature is 88.5 degrees.

Measure the outgoing air temperature of the nearest supply register. Supply temperature is 116.8.
5.3003.5 - Refrigerant Line Inspection

Desired Outcome:
Refrigerant lines properly installed

Note:
The authority having jurisdiction may require that a licensed professional perform certain tasks outlined in this detail.

5.3003.5a - Insulation

Desired Outcome:
Refrigerant lines properly installed

Specification(s):
All suction or vapor refrigerant lines, will be insulated to a minimum of R-4

High-side or liquid refrigerant lines will not be insulated unless specified by the equipment's manufacturer

Objective(s):
Ensure refrigerant lines do not gain excessive heat, or cause condensation to occur inside the building envelope

5.3003.5b - Ultraviolet (UV) protection of insulation

Desired Outcome:
Refrigerant lines properly installed

Specification(s):
If exposed to sunlight, refrigerant line insulation will be protected from UV degradation in accordance with manufacturer specifications, IRC or local code

Objective(s):
Install insulation so it does not degrade
5.3003.5c - Sizing

Desired Outcome:
Refrigerant lines properly installed

Specification(s):
Refrigerant lines will be sized to meet manufacturer specifications for the installed equipment

Objective(s):
Ensure system moves appropriate volume of refrigerant

5.3003.5d - Installation quality

Desired Outcome:
Refrigerant lines properly installed

Specification(s):
Refrigerant lines will be installed without kinks, crimps, or excessive bends

Objective(s):
Ensure system moves appropriate volume of refrigerant

5.3003.5e - Support

Desired Outcome:
Refrigerant lines properly installed

Specification(s):
Refrigerant lines will be routed, supported, and secured to house in a manner that protects the line from damage by workers or occupants.

Objective(s):
Ensure refrigerant lines do not move, vibrate, or sag

Protect lines from damage
5.3003.8 - Evaporative Cooler Maintenance and Repairs

Desired Outcome:
Evaporative cooler evaluated and maintained as needed

5.3003.8a - Assessment and diagnosis

Desired Outcome:
Evaporative cooler evaluated and maintained as needed

Specification(s):
The following system elements will be assessed:

- Pump
- Pan
- Spider
- Float
- Damper
- Roof jack support
- Water line
- Water valve
- Electrical
- Pads
- Motor
- Fan

Elements will be repaired or replaced as needed in accordance with manufacturer instructions

Objective(s):
Ensure all components function properly
Assess wear and tear on various parts of evaporative cooler.

- Pads have deposits and are shrunken from age. Replace.
- Pump needs to be cleaned of calcium deposits.
- Pan has calcium deposits as well but still holds water.
- Check spider, which distributes water to pads, for cracks and leaks.
- The float, attached to the water valve, shows no signs of cracking.
- The damper needs to be opened at the beginning of summer.
- The roof jack shows some signs of cracking and should be resealed.
Desired Outcome:
Evaporative cooler evaluated and maintained as needed

Specification(s):
Calcium deposits will be removed

Pads will be replaced

Any additional repairs or replacements will be made as necessary in accordance with manufacturer's instructions

Objective(s):
Protect the potable water supply from cross-contamination

Ensure evaporative cooler functions properly
Tools:
1. Large vessel

Materials:
1. Scrub pads
2. Distilled white vinegar

See also SWS 2.0100.1f and 2.0100.1l for Health & Safety measures.

When working on a roof, always be sure to wear a fall-protection harness and proper PPE.

Use vinegar both as a soak and on scrub pads to remove calcium deposits.

Scrub calcium deposits off all surfaces, including trickle trough.

Exterior deposits should also be cleaned. Can you tell which part is clean?

Measure and cut, if necessary, new pads designed for use in swamp coolers.

Reinstall new pads, held in place with metal bracketing.

5.3003.8c - Occupant education

Desired Outcome:
Evaporative cooler evaluated and maintained as needed

Specification(s):
A regular service schedule will be recommended to occupant

Issues regarding multiple systems running will be discussed with occupant
Objective(s):
Ensure the occupant understands basic operation and the importance of regular maintenance

Best Practice
Occupants with evaporative coolers should be alerted to proper maintenance

Best Practice
Communicate professionally with occupant to provide information and support

Review properly and timely evaporative cooler maintenance

Explain evaporative and refrigerative cooling should not be run together
5.3003.11 - Heating and Cooling Controls

Desired Outcome:
Heating and cooling controls installed and set properly

5.3003.11a - Removal of mercury-based thermostats

Desired Outcome:
Heating and cooling controls installed and set properly

Specification(s):
Mercury-based thermostat will be removed safely and disposed of in accordance with EPA regulations

Objective(s):
Protect workers and occupants from injury
Protect environment from damage

Paraphrased from 40 CFR 273.14: A universal waste mercury-containing thermostat or container containing only universal waste mercury-containing thermostats should be labeled or marked clearly with any of the following phrases: "Universal Waste-Mercury Thermostat(s)," "Waste Mercury thermostat(s)," or "Used Mercury Thermostat(s)." **Contact thermostat-recycle.org or earth911.org for recycling options.
5.3003.14 - Combustion Analysis of Gas-Fired Appliances (LP and Natural Gas)

Desired Outcome:
Analysis of critical components and operations completed in accordance with industry and manufacturer specifications

5.3003.14a - Gas Pressure

Desired Outcome:
Analysis of critical components and operations completed in accordance with industry and manufacturer specifications

Specification(s):
Measurement will be verified by a certified professional in accordance with fuel type and manufacturer specifications

Objective(s):
Ensure equipment:

- Operates as designed
- Operates safely
- Operates efficiently
- Is durable

Best Practice
Natural gas should have a manifold pressure of 3.5" w.c.

Best Practice
Propane should have a manifold pressure of 10" w.c.

Tools:
1. Gas pressure gauge
State of Missouri DOE variance 1/29/18: Gas pressure testing will be completed by a certified HVAC professional on new Gas HVAC installs and all Gas unit clean and tunes

See the manufacturer's specifications for desired manifold pressure

5.3003.14b - Place appliance in operation

Desired Outcome:
Analysis of critical components and operations completed in accordance with industry and manufacturer specifications

Specification(s):
Heating equipment will be placed in operation in accordance with applicable NFPA standards and manufacturer specifications when available

Objective(s):
Ensure equipment:
- Operates as designed
- Operates safely
- Operates efficiently
- Is durable
Appliance is set to OFF at the electrical disconnect and will not fire

Appliance is set to ON at the disconnect and can now fire

Ensure appliance is fired is accordance with manufacturer's specifications.

Propane - Ensure gas valve is open at the tank and there is fuel in the tank

Natural Gas - Ensure the valve on the meter is on

Ensure gas valve is open at the appliance

Turn appliance to heat, and raise the temperature 15 degrees above ambient conditions
5.3003.14c - Carbon dioxide (CO2) and oxygen (O2)

Desired Outcome:
Analysis of critical components and operations completed in accordance with industry and manufacturer specifications

Specification(s):
Measurement will be verified in accordance with industry manuals (e.g., Testo, Bacharach)

Objective(s):
Ensure equipment:

- Operates as designed
- Operates safely
- Operates efficiently
- Is durable

Best Practice
Carbon dioxide and oxygen levels should be measured in undiluted flue gas

Tools:
1. Combustion analyzer with probe

Oxygen levels usually should fall between 7-9%. CO2 should be between 6.5-8%.

5.3003.14d - Carbon monoxide (CO) in flue gas

Desired Outcome:
Analysis of critical components and operations completed in accordance with industry and manufacturer specifications
Specification(s):
CO in the undiluted flue gas will be less than 400 ppm air-free

Objective(s):
Ensure equipment:

- Operates as designed
- Operates safely
- Operates efficiently
- Is durable

Best Practice
CO levels should be less than 100 ppm to ensure safe operation

Direct vent appliances have concentric venting. The inner liner exhausts flue gas and the outer draws in combustion air.

Ensure that the test ports drilled penetrate into the flue. Be sure to drop the outer liner into position before testing.

With the test ports lined up on the inner and outer pipe, measurements can be taken in undiluted flue gas.

5.3003.14e - Testing/inspection holes

Desired Outcome:
Analysis of critical components and operations completed in accordance with industry and manufacturer specifications

Specification(s):
All testing and inspection holes will be sealed with manufacturer approved materials

Objective(s):
Ensure equipment:

- Operates as designed
- Operates safely
- Operates efficiently
- Is durable

Materials:
1. high temperature sealant
2. stainless steel plug or cap
3. stainless 5/16" bolt
Apply high temperature sealant to the bolt, so that both holes will be sealed. Screw the bolt into place, ensuring a proper seal on both pipes. If sealing each wall individually, insert the plug into each hole.

Apply high temperature sealant to the perimeter of the plug.
5.3003.15 - Combustion Analysis of Oil-Fired Appliances

Desired Outcome:
Analysis of critical components and operations completed to industry and manufacturer specifications

5.3003.15a - Oil system: smoke test

Desired Outcome:
Analysis of critical components and operations completed to industry and manufacturer specifications

Specification(s):
Smoke test will be conducted before any combustion testing is completed

Smoke spot reading will be in accordance with burner manufacturer specifications

Objective(s):
Ensure equipment:

• Operates as designed
• Operates safely
• Operates efficiently
• Is durable

Tools:
1. Smoke testing pump

Materials:
1. Filter paper
Place filter paper in testing pump and draw air through paper

Remove paper and verify draw was successful by checking for soot

Compare level of soot deposit against smoke chart. A rating of 0 is ideal

Appliances with ratings of 3 or higher should be cleaned and tuned

5.3003.15c - Oil filter

Desired Outcome:
Analysis of critical components and operations completed to industry and manufacturer specifications

Specification(s):
Filter will be present, clean, and leak free

Objective(s):
Ensure equipment:

- Operates as designed
- Operates safely
- Operates efficiently
- Is durable
5.3003.15d - Fuel pressure

Desired Outcome:
Analysis of critical components and operations completed to industry and manufacturer specifications

Specification(s):
Measurement will be verified in accordance with manufacturer specifications

Objective(s):
Ensure equipment:

- Operates as designed
- Operates safely
- Operates efficiently
- Is durable
Best Practice

Check oil-fired furnaces and water heaters for proper fuel pressure

After

Verify that fuel pressure matches manufacturer's specifications

5.3003.15e - Oil system: steady state efficiency (SSE)

Desired Outcome:
Analysis of critical components and operations completed to industry and manufacturer specifications

Specification(s):
Measurement will be verified in accordance with manufacturer specifications

Objective(s):
Ensure equipment:

- Operates as designed
- Operates safely
- Operates efficiently
- Is durable
Best Practice

Test flue gases to determine steady state efficiency

Tools:
1. Combustion analyzer with probe

5.3003.15f - Net stack temperature

Desired Outcome:
Analysis of critical components and operations completed to industry and manufacturer specifications

Specification(s):
Net stack temperature will be measured and verified in accordance with manufacturer specifications

Objective(s):
Ensure equipment:

- Operates as designed
- Operates safely
- Operates efficiently
- Is durable
Best Practice
Verify oil-fired appliances are not burning hotter than manufacturer specs

Tools:
1. Combustion analyzer with probe

T=temperature. T-stack minus T-air = Delta T or Net Stack Temperature.

5.3003.15g - Carbon dioxide (CO2) and oxygen (O2)

Desired Outcome:
Analysis of critical components and operations completed to industry and manufacturer specifications

Specification(s):
Measurement will be verified in accordance with industry manuals (e.g., Testo, Bacharach)

Objective(s):
Ensure equipment:

- Operates as designed
- Operates safely
- Operates efficiently
- Is durable
Verify oil-fired appliances are burning safely by testing CO2 and O2 levels.

Tools:

1. Combustion analyzer with probe
2. Drill

15.4% should be the highest allowable level of CO2 produced by an oil-fired appliance.

O2 levels in the atmosphere are at a constant 20.9%. O2 readings in appliances vary due to O2 density and the efficiency of the combustion process.

5.3003.15h - Excess combustion air

Desired Outcome:
Analysis of critical components and operations completed to industry and manufacturer specifications

Specification(s):
Excess air will be minimized in accordance with industry best practices

Objective(s):
Ensure equipment:

- Operates as designed
- Operates safely
- Operates efficiently
- Is durable
Oil-fired appliances require an appropriate level of air mixed with the oil

The percentage of Excess Air (EA) should be within manufacturer specs

Tools:
1. Combustion analyzer with probe
2. Drill

5.3003.15i - CO in flue gas

Desired Outcome:
Analysis of critical components and operations completed to industry and manufacturer specifications

Specification(s):
CO in the undiluted flue gas will be less than 400 ppm air-free

Objective(s):
Ensure equipment:

- Operates as designed
- Operates safely
- Operates efficiently
- Is durable
Best Practice

Test oil-fired appliances for CO in the flue gases to verify safe levels

CO should measure less than 100ppm

Tools:

1. Combustion analyzer with probe
2. Drill

5.3003.15j - Testing/inspection holes

Desired Outcome:
Analysis of critical components and operations completed to industry and manufacturer specifications

Specification(s):
All testing and inspection holes will be sealed as approved by the authority having jurisdiction

Objective(s):
Ensure equipment:

- Operates as designed
- Operates safely
- Operates efficiently
- Is durable
Before

The testing hole was left unsealed.

After

The hole in both walls has been properly sealed with a plug, cap, or other approved method.

1

If using a bolt, apply high temperature sealant to the bolt, so that both holes will be sealed.

2

Screw the bolt into place, ensuring a proper seal on both pipes.

3

If sealing each wall individually, insert the plug into each hole.

4

Apply high temperature sealant to the perimeter of the plug.
6.6002.4 - Ducts (Exhaust Fans)

Desired Outcome:
Installed ducts effectively move the required volume of air and prevent condensation

Note:

6.6002.4a - Duct design and configuration

Desired Outcome:
Installed ducts effectively move the required volume of air and prevent condensation

Specification(s):
Consideration will be given to:

- Vent termination location
- Amount of space for duct run
- Roof condition, type, and access (e.g., metal, shingle, bow string, flat)
- Duct insulation

When applicable, pitch duct to remove condensation to outdoors

Ducts will be as straight as possible, fully extended, and have the shortest run possible

Turns will be made so the radius at the centerline is no less than one duct diameter

Duct diameter will be equal to or greater than the exhaust fan outlet

Fan flow will be verified by flow measurement to meet ASHRAE Standard 62.2

Objective(s):
Effectively move the required volume of air

6.6002.4b - Duct insulation

Desired Outcome:
Installed ducts effectively move the required volume of air and prevent condensation

Specification(s):
Ducts installed outside of the thermal envelope will be insulated to a minimum of R-8 or in
Objective(s):
Prevent condensation from forming or collecting inside or outside of the ductwork

Desired Outcome:
Installed ducts effectively move the required volume of air and prevent condensation

Specification(s):
Horizontal runs will be supported in accordance with flex duct manufacturer specifications and local codes

Supports with a width of at least 1 ½” will be used or adequate metal support

Objective(s):
Effectively move the required volume of air

Preserve the integrity of the duct system
Materials:

1. 1.5” webbing or strap material

6.6002.4d - Duct connections

Desired Outcome:

Installed ducts effectively move the required volume of air and prevent condensation

Specification(s):

Metal-to-metal or metal-to-PVC connections will be fastened with a minimum of three equally spaced screws

Flexible duct-to-metal or flexible duct-to-PVC connections will be fastened with tie bands using a tie band tensioning tool

PVC-to-PVC connections will be fastened with approved PVC cement

Other specialized duct fittings will be fastened in accordance with manufacturer specifications

In addition to mechanical fasteners, duct connections will be sealed with UL 181B or 181B-M listed material

Objective(s):

Effectively move the required volume of air

Preserve the integrity of the duct system
For flex to metal connections, use zip tie and tensioner to secure liner to connection fitting.

Tools:
1. drill
2. tie band tensioner

Materials:
1. mechanical fastener
2. tie bands
3. PVC primer and cement

Round metal-to-metal connections require fiberglass mesh tape and 3 mechanical fasteners minimum.

PVC-to-PVC connections should use PVC primer and cement.

Sealants should show UL181-M or UL181B-M.

6.6002.4e - Duct materials

Desired Outcome:
Installed ducts effectively move the required volume of air and prevent condensation

Specification(s):
Flexible materials will be UL 181 listed or Air Diffusion Council approved

Rigid, smooth metal of 30-gauge wall thickness or thicker will be used

PVC material may be used
Objective(s):
Effectively move the required volume of air

Preserve the integrity of the duct system

Best Practice
This material conforms to UL Standard 181.

Look for the Air Diffusion Council seal. Flex installed should meet or exceed UL 181.

When rigid duct is being used, its wall thickness should be 30 gauge minimum.

6.6002.4f - Total exhaust airflow

Desired Outcome:
Installed ducts effectively move the required volume of air and prevent condensation

Specification(s):
Total exhaust system ventilation airflow will be measured

Objective(s):
Ensure air flow is as designed
Exhaust fan flow should be measured and compared with the fans rated capacity as well as ASHRAE 62.2 requirements.

Tools:
1. Exhaust fan flow meter
2. Manometer

ASHRAE requires the following flows for bath fans: 50CFM intermittent, or 20CFM continuous.

The requirements for kitchen range hoods are: 100CFM intermittent, or 5ACH(for kitchen area) continuous.
6.6003.1 - Surface-Mounted Ducted

Desired Outcome:
Surface-mounted ducted fans installed to specification

Note:
The authority having jurisdiction may require that a licensed professional perform certain tasks outlined in this detail.

6.6003.1a - Hole through interior surface

Desired Outcome:
Surface-mounted ducted fans installed to specification

Specification(s):
A hole no greater than a 1/4" greater than the assembly will be cut to accommodate fan assembly

Objective(s):
Minimize repair work

Ensure a secure installation

Tools:
1. Tape measure
2. Saw
3. Writing utensil

In Progress
Determine size to cut hole by measuring fan assembly and ducting

After
A snug fit should be ensured to minimize weatherproofing required
Measure the termination fitting to determine proper hole diameter (in this case, 4"").

Hole should be no more than 1/4" larger than assembly diameter.

Clear wall surface and mark hole size 1/4" larger than termination fitting.

Since opening is larger than most hole saws, precision cutting is important.

6.6003.1b - Wiring

Desired Outcome:
Surface-mounted ducted fans installed to specification.

Specification(s):
Wiring will be installed by a properly licensed contractor, as required by the authority having jurisdiction.

Wiring will be installed in accordance with original equipment manufacturer specifications, and local and national electrical and mechanical codes.

Objective(s):
Prevent an electrical hazard.
6.6003.1c - Fan mounting

Desired Outcome:
Surface-mounted ducted fans installed to specification

Specification(s):
Fan outlet will be oriented toward the final termination location

Fan will be oriented so the equivalent length of the duct run is as short as possible

Fan will be mounted securely in accordance with manufacturer specifications

Objective(s):
Ensure short duct run to achieve optimum air flow

Ensure a secure installation

Ensure fan housing does not shake, rattle, or hum when operating
6.6003.1d - Backdraft damper

Desired Outcome:
Surface-mounted ducted fans installed to specification

Specification(s):
A backdraft damper will be installed between the outlet side of the fan and the exterior

Objective(s):
Prevent reverse air flow when the fan is off

Best Practice
Damper should be installed to maintain exterior air barrier

6.6003.1e - Duct-to-fan connection

Desired Outcome:
Surface-mounted ducted fans installed to specification

Specification(s):
Duct-to-fan outlet will be connected and sealed as follows:

- Round metal-to-metal or metal-to-PVC connections will be fastened with a minimum of three equally spaced screws
- Other metal-to-metal or metal-to-PVC connections will be securely fastened and sealed with welds, gaskets, mastics (adhesives), mastic-plus-embedded-fabric systems, or tapes
- Flexible duct-to-metal or flexible duct-to-PVC connections will be fastened with tie bands using a tie band tensioning tool
- PVC-to-PVC connections will be fastened with approved PVC cement
- Other specialized duct fittings will be fastened according to manufacturer specifications
• In addition to mechanical fasteners, duct connections will be sealed with UL 181B or 181B-M listed material

Objective(s):
Exhaust to outside

Tools:
1. Drill
2. Tie band tensioner
3. Brush

Materials:
1. Tie bands
2. Mechanical fasteners
3. UL181 listed mastic
4. PVC primer and cement
5. Insulated flex duct

Apply mastic to the connection fitting
Snug duct liner onto connection fitting
Use tie band and tensioner to secure liner to connection fitting
Apply mastic to fan connection

Using mechanical fasteners, secure connection fitting to fan connection

Snug insulation to fan housing and strap into place

Round metal-to-metal connections require fiberglass mesh tape and 3 mechanical fasteners minimum

PVC-to-PVC connections should use PVC primer and cement

Sealants should be UL181-M or UL181B-M listed

6.6003.1f - Fan housing seal

Desired Outcome:
Surface-mounted ducted fans installed to specification

Specification(s):
Gaps and holes in fan housing will be sealed with caulk or other sealants in accordance with manufacturer recommendations

Sealants will be compatible with their intended surfaces

Sealants will be continuous and meet fire barrier specifications

Objective(s):
Prevent air leakage through fan housing

Ensure a permanent seal
Prevent a fire hazard

Seal openings in the fan housing to ensure that air is exhausted only from the desired location.

Tools:
1. caulk gun

Materials:
1. caulk

6.6003.1g - Fan to interior surface seal

Desired Outcome:
Surface-mounted ducted fans installed to specification

Specification(s):
Sealants will be compatible with their intended surfaces
Sealants will be continuous and meet fire barrier specifications

Objective(s):
Prevent air leakage between house and fan
6.6003.1h - Air flow

Desired Outcome:
Surface-mounted ducted fans installed to specification

Specification(s):
Air flows in cubic feet per minute (CFM) will be measured and adjusted to meet the whole house upgrade design requirements

Objective(s):
Exhaust sufficient air from desired locations to outside

Exhaust fan flow should be measured and compared with the fans rated capacity as well as ASHRAE 62.2 requirements.
Tools:
1. digital manometer
2. exhaust fan flow measuring device
3. fan speed controller

Perform the ASHRAE calculation to determine the Qfan or continuous ventilation needed.

Measure the fan flow to see how much adjustment is needed.

Adjust the fan speed using the chosen fan control device.

Re-measure the fan flow, and continue making adjustments until desired flow is achieved.

6.6003.1i - Preventing air leakage caused by exhaust fans

Desired Outcome:
Surface-mounted ducted fans installed to specification

Specification(s):
Leakage to the house from other spaces will be prevented (e.g., garages, unconditioned crawl
spaces, unconditioned attics)

Objective(s):
Ensure occupant health and safety

![Diagram of attic, conditioned living space, crawl space, and garage with air sealing required along red lines]

Best Practice
The barrier between conditioned and unconditioned spaces should be sealed

6.6003.1j - Combustion safety

Desired Outcome:
Surface-mounted ducted fans installed to specification

Specification(s):
Pressure effects will be assessed and corrected on all combustion appliances

Objective(s):
Ensure safe operation of combustion appliances
Installing new ventilation can cause imbalances within the house

Test to assure that combustion appliances do not spill during "Worst Case" depressurization

Tools:

1. Manometer
6.6003.2 - Inline

Desired Outcome:
Inline fans installed to specification

Note:
The authority having jurisdiction may require that a licensed professional perform certain tasks outlined in this detail.

6.6003.2a - Wiring

Desired Outcome:
Inline fans installed to specification

Specification(s):
Wiring will be installed by a properly licensed contractor, as required by the authority having jurisdiction

Wiring will be installed in accordance with original equipment manufacturer specifications, and local and national electrical and mechanical codes

Objective(s):
Prevent an electrical hazard

6.6003.2b - Access

Desired Outcome:
Inline fans installed to specification

Specification(s):
Fan and service switch will be accessible for maintenance according to NFPA 70 National Electric Code or local authority having jurisdiction

Objective(s):
Fan and service switch will be accessible for maintenance

6.6003.2c - Fan mounting

Desired Outcome:
Inline fans installed to specification

Specification(s):
Fan outlet will be oriented toward the final termination location

Fan will be oriented so the equivalent length of the duct run is as short as possible

Fan will be mounted securely in accordance with manufacturer specifications

Fan will be isolated from the building framing unless specifically designed to be directly attached

Fan will be installed remotely by installing ducting from intake grille

Objective(s):
Ensure short duct run to achieve optimum air flow

Ensure fan is installed securely

Ensure fan housing or building framing does not shake, rattle, or hum when operating

Minimize noise

6.6003.2d - Backdraft damper

Desired Outcome:
Inline fans installed to specification

Specification(s):
A backdraft damper will be installed between the outlet side of the fan and the exterior

Objective(s):
Prevent reverse air flow when the fan is off

6.6003.2e - Duct connections

Desired Outcome:
Inline fans installed to specification

Specification(s):
Ducts will be connected and sealed to the intake fan and termination fitting as follows:
• Round metal-to-metal or metal-to-PVC connections will be fastened with a minimum of three equally spaced screws
• Other metal-to-metal or metal-to-PVC connections will be securely fastened and sealed with welds, gaskets, mastics (adhesives), mastic-plus-embedded-fabric systems or tapes
• Flexible duct-to-metal or flexible duct-to-PVC connections will be fastened with tie bands using a tie band tensioning tool
• PVC-to-PVC connections will be fastened with approved PVC cement
• Other specialized duct fittings will be fastened in accordance with manufacturer specifications
• In addition to mechanical fasteners, duct connections will be sealed with UL 181B or 181B-M listed material

Objective(s):
Exhaust from desired location to outside
Preserve integrity of the duct system and building envelope

Tools:
1. Drill
2. Tie band tensioner
3. Brush

Materials:
1. Tie bands
2. Insulated flex duct
3. Mastic (air duct sealant) labeled UL 181 B-M
4. PVC primer
5. PVC cement
Apply mastic to the connection fitting
Snug duct liner onto connection fitting
Use tie band and tensioner to secure liner to connection fitting

Apply mastic to fan connection
Using mechanical fasteners, secure connection fitting to fan connection
Snug insulation to fan housing and strap into place

Round metal-to-metal connections require fiberglass mesh tape and 3 mechanical fasteners minimum
PVC-to-PVC connections should use PVC primer and cement
Sealants should be UL181-M or UL181B-M listed

6.6003.2f - Boot to interior surface seal

Desired Outcome:
Inline fans installed to specification

Specification(s):
Sealants will be compatible with their intended surfaces

Sealants will be continuous and meet fire barrier specifications

Objective(s):
Prevent air leakage around intake housing

Prevent a fire hazard

6.6003.2g - Air flow

Desired Outcome:
Inline fans installed to specification

Specification(s):
Air flows in CFM will be measured and adjusted to meet the design requirements

Objective(s):
Exhaust sufficient air from desired locations to outside

In Progress
Exhaust fan flow should be measured and compared with the fans rated capacity as well as ASHRAE 62.2 requirements.

Tools:
1. digital manometer
2. exhaust fan flow measuring device
3. fan speed controller
Perform the ASHRAE calculation to determine the Qfan or continuous ventilation needed.

Measure the fan flow to see how much adjustment is needed.

Adjust the fan speed using the chosen fan control device.

Re-measure the fan flow, and continue making adjustments until desired flow is achieved.

6.6003.2h - Preventing air leakage caused by exhaust fans

Desired Outcome:
Inline fans installed to specification

Specification(s):
Leakage to the house from other spaces will be prevented (e.g., garages, unconditioned crawl spaces, unconditioned attics)

Objective(s):
Ensure occupant health and safety
The barrier between conditioned and unconditioned spaces should be sealed.

6.6003.2i - Combustion safety

Desired Outcome:
Inline fans installed to specification

Specification(s):
Pressure effects caused by fans will be assessed and corrected when found outside of combustion safety standards

Exhaust fans and other exhausting systems shall be provided with makeup air or other pressure relief

Objective(s):
Ensure safe operation of combustion appliances
Pressure should be measured in the CAZ to verify combustion appliances operate safely.

Best Practice

If depressurization in the CAZ exceeds acceptable limits, return air pathways or make up air may be needed.

Tools:

1. digital manometer
2. static pressure probe
3. 1/4" hoses
4. smoke stick or equivalent
5. combustion analyzer

Set the house to natural conditions. With the manometer measuring CAZ WRT outside, perform the baseline procedure.

Turn on all exhausting appliances (vented outdoors), including the dryer, kitchen fan, and bath fans.

Close all doors. With your back to the CAZ, smoke doors with fans behind them. Smoke in: open door, smoke out: close it.
Measure CAZ pressure with the door open and record the reading. Close the door and record the reading.

Turn on the air handler fan.

Recheck all door positions for worst case depressurization. Smoke hits your toes, leave the door closed.

Measure CAZ pressure with the door open then closed. Record the readings. Recreate the WCD, or the most negative seen.

Fire the unit and check draft pressure using the manometer or combustion analyzer.

Measure flue gases at steady state and record readings. Turn off the unit being tested per manufacturers instructions.
6.6003.5 - Garage Exhaust Fan

Desired Outcome:
Contaminants properly removed from house

6.6003.5a - System selection

Desired Outcome:
Contaminants properly removed from house

Specification(s):
Ventilation for garage will be exhaust only and provide a minimum installed capacity of 100 CFM of ventilation per vehicle bay and will vent directly outdoors

Garage exhaust fan will be wired for continuous operation or installed with automatic controls that activate the fan whenever the garage is occupied and for at least 15 minutes after the garage has been vacated

If a ducted fan (not through-the-wall) is used, measure and verify the minimum air flow and adjust as necessary

Objective(s):
Remove contaminants from garage
Reduce contaminant migration from garage to house
Ensure occupant health and safety

6.6003.5b - Air leakage

Desired Outcome:
Contaminants properly removed from house

Specification(s):
Air leakage between the house and garages will be prevented by sealing and weatherstripping

Objective(s):
Ensure occupant health and safety
Reduce conditioned air being drawn from the house

Reduce contaminant migration from garage to house

Before
The reading is zero indicating strong connection with the garage.

After
The reading is closer to 50, indicating the garage is connected to the outside.

Tools:
1. blower door assembly
2. manometer

Depressurize the house to 50 pascals.

The reading of 50 pascals indicates the zone is more closely connected to the outside.

6.6003.5c - Combustion safety

Desired Outcome:
Contaminants properly removed from house

Specification(s):
Pressure effects caused by fans will be assessed and corrected when found outside of combustion safety standards
Exhaust fans and other exhausting systems shall be provided with makeup air or other pressure relief

Objective(s):
Ensure safe operation of combustion appliances

Ensure occupant health and safety

In Progress

Pressure should be measured in the CAZ to verify combustion appliances operate safely.

Best Practice

If depressurization in the CAZ exceeds acceptable limits, return air pathways or make up air may be needed.

Tools:

1. Manometer
2. Static pressure probe
3. 1/4" hoses
4. Smoke pencil
5. Combustion analyzer

Set the house to natural conditions. With the manometer measuring CAZ WRT outside, perform the baseline procedure.

Turn on all exhausting appliances (vented outdoors), including the dryer, kitchen fan, and bath fans.

Close all doors. With your back to the CAZ, smoke doors with fans behind them. Smoke in: open door, smoke out: close it.
Measure CAZ pressure with the door open and record the reading. Close the door and record the reading.

Turn on the air handler fan.

Recheck all door positions for worst case depressurization. Smoke hits your toes, leave the door closed.

Measure CAZ pressure with the door open then closed. Record the readings. Recreate the WCD, or the most negative seen.

Fire the unit and check draft pressure using the manometer or combustion analyzer.

Measure flue gases at steady state and record readings. Turn off the unit being tested per manufacturers instructions.
6.6003.6 - Fan Placement (Whole House/Common Space Exhaust Only)

Desired Outcome:
Provide primary ventilation for common spaces

Note:

6.6003.6a - Clearance

Desired Outcome:
Provide primary ventilation for common spaces

Specification(s):
Clearance for size of the fan recommended will be determined
Consideration will be given for adequate head clearance

Objective(s):
Ensure access for installation, operation, and maintenance
Ensure occupant safety

6.6003.6b - Power source

Desired Outcome:
Provide primary ventilation for common spaces

Specification(s):
Power source load will be determined as adequate
Consideration will be given to power source location

Objective(s):
Provide accessible and adequate power source

6.6003.6c - Location

Desired Outcome:
Provide primary ventilation for common spaces

Specification(s):
No resistance greater than 3 pascals will exist between fan intake location with reference to the common area

Objective(s):
Allow fresh air distribution to common areas

6.6003.6d - Duct/vent

Desired Outcome:
Provide primary ventilation for common spaces

Specification(s):
Consideration will be given to:

- Vent termination location
- Amount of space for duct run
- Roof condition and type (e.g., metal, shingle, bow string, flat)
- Duct insulation

When applicable, pitch duct to remove condensation to outdoors

Ducts will be as straight as possible, fully extended, and have the shortest run possible

To the extent possible, turns will be made so that the radius at the centerline is no less than one duct diameter

Duct diameter will be equal to or greater than the exhaust fan outlet

Fan flow will be verified by flow measurement to meet ASHRAE standard 62.2

Objective(s):
Effectively move the required volume of air

6.6003.6e - Attachment

Desired Outcome:
Provide primary ventilation for common spaces
Specification(s):
Fan will be secured to a structural component

Structural integrity of the manufactured home will be maintained (e.g., roof trusses, walls, floor joists)

Objective(s):
Maintain structural integrity

Maintain fan attachment

6.6003.6f - Total exhaust airflow

Desired Outcome:
Provide primary ventilation for common spaces

Specification(s):
Total exhaust system airflow will be measured

Objective(s):
Ensure exhaust airflow is as designed

In Progress
Measure the fan flow with the flow meter.

Tools:
1. Exhaust fan flow meter
2. Manometer

ASHRAE 62.2-16 minimum CFM requirements shall be considered.
Attach hose to the fan meter.

Attach hose to the manometer set to PR/PR.

Adjust gate on the flow meter as needed.

With the flow meter in place, read the resulting pressure on the manometer.

Match the pressure reading to the gate selection and read the final CFM flow.
6.6005.1 - Clothes Dryer

Desired Outcome:
Dryer air exhausted efficiently and safely

6.6005.1a - Clothes dryer ducting

Desired Outcome:
Dryer air exhausted efficiently and safely

Specification(s):
Clothes dryers will be ducted to the outdoors, which does not include unconditioned spaces, such as attics and crawl spaces that are ventilated with the outdoors

As short a run as practical of rigid sheet metal or semi-rigid sheet metal venting material will be used in accordance with manufacturer specifications

Dryer ducts exceeding 35’ in duct equivalent length will have a dryer booster fan installed

Plastic venting material will not be used

Uninsulated clothes dryer duct will not pass through unconditioned spaces, such as attics and crawl spaces, except where allowed by the authority having jurisdiction

Ducts will be connected and sealed as follows:

- UL-listed foil type or semi-rigid sheet metal to rigid metal will be fastened with clamp
- Other specialized duct fittings will be fastened in accordance with manufacturer specifications
- In addition to mechanical fasteners, duct connections will be sealed with UL 181B or 181B-M listed material

In addition,

- Sheet metal screws or other fasteners that will obstruct the exhaust flow will not be used
- Condensing dryers will be plumbed to a drain

Objective(s):
Preserve integrity of building envelope
Effectively move air from clothes dryer to outside

Before
Dryer is vented outside, but with wrong material

After
Dryer is vented outdoors, with correct material. Run is as short and straight as possible ensuring maximum flow.

Tools:
1. Metal snips
2. Drill

Materials:
1. Metal flex duct
2. Dryer vent kit
3. Hose clamps

1. Disconnect existing vent pipe from termination. If hose clamp is installed, save for reuse.
2. Disconnect existing vent pipe from dryer.
3. Attach approved vent material to termination vent. Termination vent may need to be trimmed.
Trim metal vent to ensure the run is as short and straight as possible.

Connect vent pipe to dryer.

Dryer vents to outdoors, and exhaust damper is functional.

For vent runs >35 feet, a booster fan is required.

Duct runs outside of conditioned space must be insulated and properly supported.

6.6005.1b - Termination fitting

Desired Outcome:
Dryer air exhausted efficiently and safely

Specification(s):
Termination fitting manufactured for use with dryers will be installed
A backdraft damper will be included, as described in termination fitting detail

Objective(s):
Preserve integrity of building envelope
Effectively move air from clothes dryer to outside
Termination fittings for dryers should have backdraft dampers

Most modern dryer vents have a built-in backdraft damper. To minimize pest intrusion, mesh >1/4" square can be used.

6.6005.1c - Makeup air

Desired Outcome:
Dryer air exhausted efficiently and safely

Specification(s):
If natural draft combustion appliances are present and if worst-case CAZ and/or other performance based testing is conducted and indicates a need for make-up air, make-up air will be provided in accordance with the current version of ASHRAE 62.2 and in compliance with the authority having jurisdiction.

If natural draft combustion appliances are present and if no performance based testing is conducted, make-up air will be provided prescriptively in accordance with the current version of ASHRAE 62.2 and in compliance with the authority having jurisdiction.
Objective(s):
Preserve integrity of building envelope
Effectively move air from clothes dryer to outside

Best Practice
A passive inlet vent can provide make-up air for dryer exhaust

Tools:
1. Drill
2. Hole saw
3. Caulk gun

Materials:
1. Caulk sealant
2. Fasteners

6.6005.1d - Combustion safety

Desired Outcome:
Dryer air exhausted efficiently and safely

Specification(s):
Pressure effects caused by fans will be assessed and corrected when found outside of combustion safety standards

Objective(s):
Ensure safe operation of combustion appliances
Ensure occupant health and safety
Appliance exhaust, such as that for a dryer, can cause depressurization. Test to verify combustion appliances are within depressurization limits.

Tools:

1. Manometer

See SWS 2.0299.1a-i for CAZ depressurization limits.

Run depressurization testing on house to ensure new ventilation isn't causing unsafe conditions. If depressurization limit is exceeded, mitigate to eliminate safety risk. Install make-up air, such as a passive inlet vent, or other pressure relief.

After mitigation, verify that depressurization limit is not being exceeded.
6.6005.1e - Occupant education

Desired Outcome:
Dryer air exhausted efficiently and safely

Specification(s):
Occupant will be instructed to keep lint filter and termination fitting clean
Occupant will be instructed to keep dryer booster fan clean, if present

Occupant will be instructed on clothes dryer operation safety, including information on items that must not be placed in the clothes dryer (items with any oil or other flammable liquid on it, foam, rubber, plastic or other heat-sensitive fabric, glass fiber materials)

Objective(s):
Effectively move air from clothes dryer to outside

Unsafe
Neglect of clothes dryer maintenance can cause fire hazards

Best Practice
Occupants should be taught to clean lint filters and termination fittings
In homes with booster fans, occupants should know the location and how to clean.

Occupants should be taught never to put flammable articles in dryer (in this case, oily rags).
6.6005.2 - Kitchen Range

Desired Outcome:
Kitchen range fan installed to specification

Note:
The authority having jurisdiction may require that a licensed professional perform certain tasks outlined in this detail.

6.6005.2a - Wiring

Desired Outcome:
Kitchen range fan installed to specification

Specification(s):
Wiring will be installed in accordance with local regulations or the IRC in the absence of such regulations or where those regulations are not as stringent as the IRC.

Wiring will be installed in accordance with original equipment manufacturer specifications and local and national electrical and mechanical codes.

Objective(s):
Prevent an electrical hazard

6.6005.2b - Fan venting

Desired Outcome:
Kitchen range fan installed to specification

Specification(s):
Kitchen range fans will be vented to the outdoors.

Recirculating fans will not be used as a ventilating device.

Objective(s):
Remove cooking contaminants from the house.

Preserve integrity of building envelope.
6.6005.2c - Fan ducting

Desired Outcome:
Kitchen range fan installed to specification

Specification(s):
Kitchen range fans will be ducted to the outdoors
As short a run as practical of smooth wall metal duct will be used, following manufacturer specifications
Ducting will be connected and sealed as follows:

- Metal-to-metal connections will be fastened with a minimum of three equally spaced screws
- Other metal-to-metal connections will be securely fastened and sealed with welds, gaskets, mastics (adhesives), mastic-plus-embedded-fabric systems, or tapes
- For down-draft exhaust systems, PVC-to-PVC connections will be fastened with approved PVC cement
- Other specialized duct fittings will be fastened in accordance with manufacturer specifications
- In addition to mechanical fasteners, duct connections will be sealed with UL 181B or 181B-M listed material

Objective(s):
Preserve integrity of building envelope
Effectively move air from range to outside
Exhaust duct should be smooth-walled and in as short a run as possible

Daylight visible through dampered kitchen exhaust proves outside access

Tools:
1. Drill
2. Metal snips
3. Saw
4. Putty knife
5. Tape measure
6. Disposable brushes
7. Wire cutters
8. Scissors

Materials:
1. Round metal ducting
2. Mastic
3. Fiberglass mesh tape
4. Fasteners
5. Galvanized wire to secure insulation onto ductwork
6. Nylon webbing for hanging ducts
7. UL-181 foil or Mylar tape to seal seams in insulation vapor barrier

See also 6.6002.4d. Note: Only smooth-wall metal duct will be used, except for down-draft exhaust systems where PVC is acceptable as well. Flex duct is NOT acceptable for kitchen fan exhaust application.

From the Manufactured Housing SWS: Ducts installed outside of the thermal envelope will be insulated to a minimum of R-8 or in accordance with local codes.
Coat joint with UL-181 mastic, at least 0.08" (2mm) thick

Wrap duct with R-8 insulation. Seal seams in insulation vapor barrier with UL-181 listed foil or Mylar tape

6.6005.2d - Termination fitting

Desired Outcome:
Kitchen range fan installed to specification

Specification(s):
Termination fitting will be installed including a backdraft damper, as described in termination fitting detail

Objective(s):
Ensure safe operation of combustion appliances
Ensure occupant health and safety

Best Practice
Kitchen exhaust termination fitting should include a backdraft damper

Best Practice
A screen can also help to discourage vermin infiltration
6.6005.2e - Makeup air

Desired Outcome:
Kitchen range fan installed to specification

Specification(s):
Makeup air will be provided for kitchen range fans exhausting more than 200 CFM

Objective(s):
Ensure safe operation of combustion appliances
Ensure occupant health and safety

![Before](image1)

Before
If kitchen exhaust is venting at more than 200 cfm, provide make-up air

![After](image2)

After
A passive inlet vent can provide make-up air for kitchen exhaust

Tools:
1. Drill
2. Hole saw
3. Caulk gun

Materials:
1. Caulk sealant
2. Fasteners

6.6005.2f - Combustion safety

Desired Outcome:
Kitchen range fan installed to specification

Specification(s):
Pressure effects caused by fans will be assessed and corrected when found outside of combustion safety standards
Objective(s):
Ensure safe operation of combustion appliances
Ensure occupant health and safety

Kitchen exhaust fans can cause combustion appliances to depressurize
Test that combustion appliances are operating within depressurization limit

Tools:
1. Manometer

See SWS 2.0299.1a-i for CAZ depressurization limits

Run depressurization testing on house to ensure new ventilation isn't causing unsafe conditions
If appliances exceed depressurization limit, mitigate to reduce risk
Install a source of make-up air, such as a passive inlet vent
After mitigation, verify that depressurization limits are not being exceeded

6.6005.2g - Occupant education

Desired Outcome:
Kitchen range fan installed to specification

Specification(s):
Occupant will be instructed to keep grease filters and termination fitting clean

Objective(s):
Effectively move air from kitchen range to outdoors
6.6188.2 - Removing Supply Vents from Garages

Desired Outcome:
Safe removal of garage supply vents

Note:

6.6188.2a - Removal of supply/return in garage

Desired Outcome:
Safe removal of garage supply vents

Specification(s):
Supply run feeding the register will be truncated as near to the supply plenum as possible

If directly connected to the plenum, the supply run will be truncated at the plenum

If connected to a Y or T branch system, the supply run will be truncated at the Y or T

Return grille located in garage will be removed in the same manner as supply

Objective(s):
Minimize duct leakage

6.6188.2b - Patching of the hole in the duct system created by removal

Desired Outcome:
Safe removal of garage supply vents

Specification(s):
All holes in sheet metal ducts will be patched with sheet metal and secured with sufficient screws to hold the patch flat without gaps

Holes left in any Y or T will be capped with sheet metal caps and fastened with at least three screws

Objective(s):
Ensure a secure and strong patch
6.6188.2c - Sealing of the patch

Desired Outcome:
Safe removal of garage supply vents

Specification(s):
All patches will be sealed with mastic meeting UL 181 and in accordance with manufacturer specifications

Objective(s):
Ensure an airtight patch

6.6188.2d - Removal of discarded ducts

Desired Outcome:
Safe removal of garage supply vents

Specification(s):
All abandoned ductwork will be removed from work area

Objective(s):
Provide a clean work site

6.6188.2e - Patching of the register hole in garage

Desired Outcome:
Safe removal of garage supply vents

Specification(s):
Holes created by the removal of the register and boot will be patched and taped using material meeting local codes

Objective(s):
Prevent a fire hazard

6.6188.2f - External static pressure testing

Desired Outcome:
Safe removal of garage supply vents

Specification(s):
Units will be tested for external static pressure (ESP) before and after work

If there is a significant rise in ESP, air flow testing will be required

Objective(s):
Ensure correct fan performance

6.6188.2g - CAZ testing

Desired Outcome:
Safe removal of garage supply vents

Specification(s):
CAZ testing will be performed where combustion appliances are utilized

Objective(s):
Identify possible conditions that can cause unsafe equipment operating conditions

See SWS 2.0201.1 and SWS 2.0201.3 for CAZ testing

Best Practice
Complete combustion appliance zone testing to ensure a healthy, safe environment
Tools:

1. Manometer
2. Mirror
3. Chemical smoke pencil
4. Stopwatch or watch with second hand
5. Combustion analyzer
6. 1/4" air line tubing
7. Gas leak detector

At the end of each day in which duct sealing or repair is performed, conduct Combustion Appliance Zone (CAZ) testing in accordance with the NREL Manufactured Home Standard Work Specifications, details 2.0201.1 and 2.0201.3.
6.6205.1 - Manufactured Housing Exhaust-Only Strategies

Desired Outcome:
Provide primary ventilation for common spaces

6.6205.1a - Assessment

Desired Outcome:
Provide primary ventilation for common spaces

Specification(s):
Assessment will be done using ASHRAE 62.2 standard:

- Blower door test
- Fan flow measurements
- Calculations

Objective(s):
Determine the ventilation needs of the whole house

In Progress
A calculation based on pre and post Wx numbers should be performed to determine the amount of ventilation needed.
The blower door number will be used to determine the infiltration credit.

Existing fan flow can be measured for alternate compliance, and new fans must be commissioned to ensure proper flow.

6.6205.1b - Selection

Desired Outcome:
Provide primary ventilation for common spaces

Specification(s):
Fan type will be capable of continuous operation and selected in accordance with ASHRAE 62.2 for:

- Sizing
- Climate considerations
- Control strategy
- Sone rating
- Durability

Fan will be ENERGY STAR qualified

Objective(s):
Determine proper fan selection

Minimize energy consumption during fan operation
Best Practice

Fans should be marked with the ENERGY STAR logo.

6.6205.1c - Location

** Desired Outcome:**
Provide primary ventilation for common spaces

Specification(s):
No resistance greater than 3 pascals will exist between fan intake location with reference to the common area

Objective(s):
Ensure fresh air distribution to common areas

Tools:
1. digital manometer

<table>
<thead>
<tr>
<th>Sone Rating Limits of 62.2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>New Fans</td>
</tr>
<tr>
<td>Existing Fans</td>
</tr>
</tbody>
</table>

No sone requirement when:
- Using an existing fan with a timer
- Remote mounted fans (i.e. inline fan in the attic)
Locate the fan in question. Connect a hose, and turn the manometer on to PR/PR. Turn on the exhaust fan.

If the pressure difference is greater than 3.0 pascals, pressure relief is needed. If pressure relief is needed, it can be provided by a through the door transfer grille. After pressure relief has been provided recheck the numbers, ensuring a reading within range.

6.6205.1d - Climate considerations

Desired Outcome: Provide primary ventilation for common spaces

Specification(s): ASHRAE 62.2 will be referenced for climate considerations

Whole house mechanical net exhaust flow for hot-humid climate will not exceed 7.5 cubic feet per minute/100 square feet

Objective(s): Maintain building durability

Protect occupant health
Best Practice
Climate should be considered when selecting a ventilation strategy. Hot humid climate zones require special attention.

6.6205.1e - Combustion Appliance Zone (CAZ) testing

Desired Outcome:
Provide primary ventilation for common spaces

Specification(s):
CAZ test will be performed where combustion appliances are utilized, where applicable

Objective(s):
Identify possible conditions that can cause unsafe equipment operating conditions

See SWS 2.0201.1 and SWS 2.0201.3 for CAZ testing

Best Practice
Complete combustion appliance zone testing to ensure a healthy, safe environment
Tools:

1. Manometer
2. Mirror
3. Chemical smoke pencil
4. Stopwatch or watch with second hand
5. Combustion analyzer
6. 1/4" air line tubing
7. Gas leak detector

At the end of each day in which duct sealing or repair is performed, conduct Combustion Appliance Zone (CAZ) testing in accordance with the NREL Manufactured Home Standard Work Specifications, details 2.0201.1 and 2.0201.3.

6.6205.1f - Occupant education

Desired Outcome:
Provide primary ventilation for common spaces

Specification(s):
Occupant will be educated on:

- Purpose of the ventilation system
- Proper operation and use of controls
- Cost and benefit of system
- Manual shut off

A label indicating the presence and purpose of the ventilation system will be included or a copy of the system operation guide will be posted at the electrical panel.

Operation guide or label will be permanently attached and in full sight

Objective(s):
Ensure occupant is educated on the safe and efficient operation of the system

Deliver intended air exchange
Clients should be educated on the purpose and operation of their new ventilation system.

Whole house ventilation should be clearly labeled.

6.6205.1g - Total exhaust airflow

Desired Outcome:
Provide primary ventilation for common spaces

Specification(s):
Total exhaust system airflow will be measured

Objective(s):
Ensure exhaust airflow is as designed

Tools:
1. digital manometer
2. exhaust fan flow measuring device
Attach hose to the fan meter.

Attach hose to the manometer set to PR/PR.

Adjust gate on the flow meter as needed.

With the flow meter in place, read the resulting pressure on the manometer.

Match the pressure reading to the gate selection and read the final CFM flow.
6.6206.1 - Decommissioning Existing Exhaust or Supply Ventilation Systems

Desired Outcome:
Safely and properly eliminate fan

Note:

6.6206.1a - Power supply

Desired Outcome:
Safely and properly eliminate fan

Specification(s):
Power supply will be disconnected and properly terminated in visible junction box

Objective(s):
Safe removal of equipment

Ensure worker safety

6.6206.1b - Removal

Desired Outcome:
Safely and properly eliminate fan

Specification(s):
Fan components will be removed and disposed of lawfully

Duct work will be removed if necessary

OR

Fan housing will be left in place, ducts will be removed, and leakage points will be air sealed

Hole will be sealed and insulated to preserve the thermal and pressure boundary

Objective(s):
Remove fan
Preserve aesthetics, and thermal and pressure boundary

6.6206.1c - Repair

Desired Outcome:
Safely and properly eliminate fan

Specification(s):
Fan opening will be sealed and insulated
If necessary, the void from the duct work removal will be insulated
Fan termination will be sealed

Objective(s):
Maximize energy efficiency
Preserve the thermal and pressure boundary

6.6206.1d - Combustion Appliance Zone (CAZ) testing

Desired Outcome:
Safely and properly eliminate fan

Specification(s):
Combustion safety test will be performed where combustion appliances are utilized

Objective(s):
Identify possible conditions that can cause unsafe equipment operating conditions
See
SWS 2.0201.3a-
2.0201.3h
for CAZ testing

Best Practice

Complete combustion appliance zone testing
to ensure a healthy, safe environment

Tools:

1. Manometer
2. Mirror
3. Chemical smoke pencil
4. Stopwatch or watch with second hand
5. Gas leak detector
6. Combustion analyzer
7. 1/4" air line tubing

At the end of each day in which duct sealing or repair is performed, conduct Combustion Appliance Zone (CAZ) testing in accordance with the NREL Manufactured Home Standard Work Specifications, details 2.0201.3a through 2.0201.3h.
6.6288.2 - Sound Ratings—New Fan Installation

Desired Outcome:
Systems operate as quietly as possible

Note:

6.6288.2a - Primary ventilation system/continuously operating fan

Desired Outcome:
Systems operate as quietly as possible

Specification(s):
System will be rated at a sound no greater than 1.0 sone

Objective(s):
Minimize noise
Maximize fan use

Bad Practice
This fan is rated at 1.5 SONES and is NOT acceptable for continuous use.

Best Practice
This fan is rated at 1.0 sones and is acceptable for continuous use.

6.6288.2b - Intermittent spot ventilation system

Desired Outcome:
Systems operate as quietly as possible
Specification(s):
Spot ventilation (local mechanical exhaust systems operated as needed by the occupant; e.g., range hood, bath fans) will be rated at a sound no greater than 3.0 sone

Objective(s):
Minimize noise
Maximize fan use

Bad Practice
This fan is rated at 3.5 SONES and is NOT acceptable for intermittent use.

Best Practice
This fan is rated at 3.0 sones and is acceptable for intermittent use.
7.8101.1 - Shower Head and Faucet Aerator

Desired Outcome:
Energy and water use reduced while occupant needs for water flow maintained

Note:
The authority having jurisdiction may require that a licensed professional perform certain tasks outlined in this detail.

7.8101.1a - Work assessment

Desired Outcome:
Energy and water use reduced while occupant needs for water flow maintained

Specification(s):
Installer pre-work assessment will be conducted to determine if plumbing needs correction before installing high-efficiency shower head or faucet

Objective(s):
Verify scope of work

7.8101.1b - Selection

Desired Outcome:
Energy and water use reduced while occupant needs for water flow maintained

Specification(s):
The rated flow of new shower heads will be 2.5 gallons per minute (GPM) or less
If multiple heads are provided, the total flow rate will not exceed 2.5 GPM
Aerator flow rate will be 2.2 GPM or less
Features will be selected that meet any special needs of the occupant (e.g., shut off, swivel, handheld showers)

Objective(s):
Reduce water and energy consumption
Ensure occupant satisfaction
7.8101.1c - Installation

Desired Outcome:
Energy and water use reduced while occupant needs for water flow maintained

Specification(s):
Equipment will be installed in accordance with manufacturer specifications and meet all applicable building codes

Water quality will be evaluated for debris that may clog the equipment

Once installed, high-efficiency shower heads or faucet aerators will be tested to determine if equipment is tightened adequately to prevent leakage at the point of connection

If needed, shower diverter will be repaired or replaced

Any penetrations to the exterior of the home created by the installation of the equipment will be sealed

Any damage done to the house during installation will be repaired

Specific information about proper maintenance of the equipment will be provided to the occupant

Warranty information, operation manuals, and installer contact information will be provided to the occupant

Water flow that satisfies the occupant will be provided by all shower heads and faucet aerators

Occupant's acceptance of the shower head and/or aerator will be documented

Objective(s):
Reduce water and energy consumption

Ensure occupant satisfaction with water flow

Eliminate water leakage

Prevent water damage
Old, high flow shower nozzle

Leak testing a new shower aerator

Tools:
1. Tongue-and-groove pliers
2. Pipe wrench
3. Adjustable wrench

Materials:
1. Joint sealing tape
2. Rags

Interview occupant to document and verify their satisfaction with new shower and faucet aerators. Operate equipment after installation to ensure that it does not leak.

Remove old, high flow shower heads
Replace with 2.5 gpm maximum shower heads
Clean corrosion and old sealant from the threads on the shower nipple using a wire brush
Seal the threads on the shower nipple with two wraps of Teflon tape. Wrap tape clockwise so it won’t peel off.

Install the new low-flow shower head.

Tighten the shower head using an adjustable wrench or tongue-and-groove pliers and a rag to protect the finish.

Turn on the water and check for leaks.

Make sure the client is happy with their new low-flow shower head. Document approval with their signature in the file.

7.8101.1d - Decommissioning

Desired Outcome:
Energy and water use reduced while occupant needs for water flow maintained

Specification(s):
Replaced shower heads and faucet aerators will be recycled or disposed of properly

Objective(s):
Prevent the reuse of inefficient equipment and components
Recycle or dispose of removed shower faucets and sink aerators to prevent their reuse.
7.8102.2 - Storage-Type Appliance

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Note:
The authority having jurisdiction may require that a licensed professional perform certain tasks outlined in this detail.

7.8102.2a - Hazardous material removal

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Specification(s):
Health concerns in the removal and replacement of equipment (e.g., asbestos, other hazardous materials) will be identified

Written notification will be provided to occupants of the discovery of hazardous material, including contact information for regional EPA asbestos coordinator

Occupant will be asked to contract with an EPA-certified asbestos contractor to conduct abatement before equipment removal and replacement (occupant is responsible for abatement or remediation)

Objective(s):
Remediate health hazards using EPA-certified contractors

7.8102.2b - Equipment removal

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Specification(s):
Accepted industry procedures and practices will be followed to:

- Remove old water heater and associated components in accordance with IRC or authority having jurisdiction
• Seal any unused chimney openings and penetrations in accordance with IRC or authority having jurisdiction
• Remove unused oil tank, lines, valves, and associated equipment in accordance with IRC or authority having jurisdiction

All work shall be completed by a licensed plumbing professional where required by the authority having jurisdiction and installed to industry-accepted standards

Objective(s):
Ensure the safety of the workers and occupants
Preserve integrity of the building
Remove old equipment in a timely and efficient manner

7.8102.2c - New equipment installation

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Specification(s):
New water heater and associated components will be installed by a licensed contractor to accepted industry standards, in accordance with the IRC and manufacturer specifications

The system will be installed to be freeze resistant
Any existing water leaks will be repaired before installation begins
Any penetrations to the exterior of the home created by the installation of the equipment will be sealed

Objective(s):
Ensure the safety of the workers and occupants
Preserve integrity of the building
Remove old equipment in a timely and efficient manner
7.8102.2d - Emergency drain pan

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Specification(s):
An emergency drain pan will be installed with sides that extend a minimum of 4" above floor if leakage would cause damage to the home and in accordance with IRC

A ¾" drain line or larger will be connected to tapping on pan and terminated in accordance with IRC

Objective(s):
Collect and safely dispose of water escaping from the storage tank

7.8102.2e - Expansion tank

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Specification(s):
Expansion tanks will be installed where required and in accordance with the AHJ

Objective(s):
Protect the storage tank from expansion

Bad Practice
Need to eliminate the valves between the storage tank and expansion tank

Best Practice
Expansion tank is installed on the cold water supply side
Missouri Technical Standards state: When replacing a water heater, a potable water expansion tank will be installed on the cold water side in accordance with the AHJ.

Appropriate licensing for installer required. Expansion tanks are only required to be installed only when in conjunction with new and replacement water heaters.

7.8102.2f - Temperature and pressure relief valve

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Specification(s):
Correct temperature and pressure relief valve will be installed in compliance with IRC and according to manufacturer specifications

Temperature and pressure relief valve discharge tube will be installed in accordance with IRC

Objective(s):
Discharge excessive energy (pressure or temperature) from storage tank to safe location

Tools:
1. Pipe wrench
2. Hacksaw

Materials:
1. PVC
2. Plumber's epoxy

Check local jurisdictional codes. Paraphrased from 2012 IRC P2803.6.1: Temperature and pressure relief valve discharge pipes should not be connected to drainage system. T&P discharge pipes should be a clean line without valve or tee, flowing with gravity to an observable and safe location that
cannot cause personal injury or structural damage -- the floor, an existing drain pan, a waste receptor, or to the outdoors. Pipe should not terminate more than 6” from floor, pan or waste receptor.

GOOD: T&P discharge should be piped within 6” of the floor or to outdoors

BAD: T&P discharge should flow with gravity and be observable

BAD: T&P discharge should not be piped into drainage system

7.8102.2g - Dielectric unions

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Specification(s):
Dielectric unions will be installed in accordance with the IRC, authority having jurisdiction, and according to manufacturer specifications

Objective(s):
Break the stray voltage electrical circuit through the storage tank

7.8102.2h - Backflow prevention

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Specification(s):
Backflow prevention will be installed in accordance with manufacturer specifications and all applicable codes

Objective(s):
Protect water supply from contamination

7.8102.2i - Thermal efficiency

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Specification(s):
If additional tank insulation is installed, it will be rated a minimum of R-11 and will be installed to manufacturer specifications

If additional insulation is installed, it will be installed based on fuel type, making sure not to obstruct draft diverter, pressure relief valve, thermostats, hi-limit switch, plumbing pipes or elements, and thermostat access plates

The first 6' of inlet and outlet piping will be insulated in accordance with manufacturer specifications

Combustible pipe insulation must maintain a minimum clearance of 6" from gas water heater draft hood and/or single wall metal pipe. Clearance from vent such as "B" vent should be maintained per vent manufacturer’s specifications

Heat traps will be installed on the inlet and outlet piping where not provided by manufacturer

Objective(s):
Reduce standby loss from near tank piping and storage tank

Ensure insulation does not make contact with flue gas venting
Tools:
1. Outward clinching (stitch) stapler
2. Utility knife
3. Scissors
4. Straight edge

Materials:
1. R-11 tank wrap
2. Vinyl tape
3. Staples
4. Rags or terry-cloth towels
5. Foam pipe insulation

Check warning labels on tanks. Not all water heaters may be insulated. Leave the tops of gas water heaters uninsulated, and be sure to keep combustion chamber access panels and combustion air holes uncovered. Cut out around thermostats on electric units. Use staples or zip ties to mechanically fasten insulation in place. Do not rely on tape alone to hold the tank wrap. Maintain proper clearance from gas appliance vents to combustibles.

1. Clean the entire outside of the water heater
2. Wrap blanket around tank and mark it where it overlaps. Add two or three inches and cut off using a straightedge and raz
3. Cut the insulation off at the mark. Peel away the excess insulation, leaving a flap of vapor barrier
4. Pull insulation blanket around the tank
5. Staple the flap to the blanket with outward clinching staples or use long zip ties to secure the blanket in place
6. Cut out around drain valve, P&T relief valve, and thermostats. Do not cover combustion access or air supply on gas units
Use remaining insulation for the top of electric water heaters. Tape up seams in the vapor barrier. Insulate water lines.

7.8102.2j - Fuel supply

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Specification(s):
Electric or fossil fuel supply components will be installed to accepted industry standards as per NFPA 31 and 54, or NFPA 70 National Electric Code (NEC) for electric components, or authority having jurisdiction

Objective(s):
Provide sufficient fuel to the water heater, burner, or element

7.8102.2k - Discharge temperature

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Specification(s):
Discharge temperature will be set not to exceed 120° or as prescribed by local code

Objective(s):
Ensure safe hot water supply temperature to fixtures
Unsafe Water heaters producing water over 120 degrees raise heating costs

Safe Water heaters should produce water under 120 degrees to prevent scalding

Tools:
1. Thermometer

Test temperature of hot water at faucets in house

Hot water temperatures should not exceed 120 degrees Fahrenheit

Adjust water heater settings and insulate as needed

After adjustment and insulation, retest to verify temp is under 120 degrees
7.8102.2I - Commissioning of system

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Specification(s):
The following will be checked once the system has been filled and purged:

- Safety controls
- Combustion safety and efficiency
- Operational controls
- Fuel and water leaks
- Local code requirements

Commissioning will be in compliance with manufacturer specifications and relevant industry standards

Objective(s):
Ensure safe system function

Keep cost of ownership as low as possible

7.8102.2m - Occupant safety

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Specification(s):
All homes will have a functioning CO alarm

If determined to be more than 5 years old, CO detector/alarm will be replaced

If CO levels in interior living spaces exceed outdoor levels, potential sources will be investigated and appropriate action taken to reduce them (e.g., have a qualified professional tune, repair, or replace improperly operating combustion appliances; apply weather stripping or conduct air sealing between the garage or crawl space and the home)

Objective(s):
Ensure occupant life safety; CO alarms are designed to detect levels at which occupants might become unable to evacuate

7.8102.2n - Occupant education

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Specification(s):
Completed work will be reviewed

Occupants will be educated on the safe and efficient operation and maintenance of the system, including:

- Adjustment of water temperature and target temperature in accordance with local code
- Periodic drain and flush
- Expansion tank and backflow preventer (no occupant maintenance required)
- Periodic inspection, maintenance, or replacement

Objective(s):
Ensure occupant is informed of the safe, efficient operation and maintenance of the system
7.8102.3 - On-Demand Appliance

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Note:
The authority having jurisdiction may require that a licensed professional perform certain tasks outlined in this detail.

7.8102.3a - Hazardous material removal

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Specification(s):
Health concerns in the removal and replacement of equipment (e.g., asbestos, other hazardous materials) will be identified

Written notification will be provided to occupants of the discovery of hazardous material, including contact information for regional EPA asbestos coordinator

Occupants will be asked to contract with an EPA-certified asbestos contractor to conduct abatement before equipment removal and replacement (occupant is responsible for abatement or remediation)

Objective(s):
Remediate health hazards using EPA-certified contractors

7.8102.3b - Equipment removal

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Specification(s):
Accepted industry procedures and practices will be followed to:

• Remove old water heater and associated components in accordance with IRC
• Seal any unused chimney openings and penetrations in accordance with IRC
• Remove unused oil tank, lines, valves, and associated equipment in accordance with IRC

All work shall be completed by a licensed plumbing professional where required by the authority having jurisdiction and installed to industry-accepted standards

Objective(s):
Ensure the safety of the workers and occupants
Preserve integrity of the building
Remove old equipment in a timely and efficient manner

7.8102.3c - New equipment installation

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Specification(s):
A new water heater and associated components will be installed to accepted industry standards, in accordance with the IRC, authority having jurisdiction, and manufacturer specifications

All work shall be completed by a licensed plumbing professional where required by the authority having jurisdiction

Objective(s):
Ensure the safety of the workers and occupants
Preserve integrity of the building
Remove old equipment in a timely and efficient manner

7.8102.3d - Emergency drain pan

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Specification(s):
An emergency drain pan and drain line shall be installed in accordance with the IRC
Objective(s):
Collect and safely dispose of water escaping from the storage tank

Tools:
1. PVC cutters
2. Tongue-and-groove pliers

Materials:
1. 4" deep drain pan
2. 3/4" or 1" PVC drain fittings and pipe
3. PVC cement

7.8102.3e - Temperature and pressure relief valve

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Specification(s):
Correct temperature and pressure relief valve will be installed in compliance with IRC and according to manufacturer specifications

Temperature and pressure relief valve discharge tube will be installed in accordance with IRC

Objective(s):
Discharge excessive energy (pressure or temperature) from storage tank to safe location
Water heaters should be not capped of at t&p valve

T&P discharge should be piped to a safe and observable location

Tools:
1. Pipe wrench
2. Hacksaw

Materials:
1. PVC
2. Plumber's epoxy

Check local jurisdictional codes. Paraphrased from 2012 IRC P2803.6.1: Temperature and pressure relief valve discharge pipes should not be connected to drainage system. T&P discharge pipes should be a clean line without valve or tee, flowing with gravity to an observable and safe location that cannot cause personal injury or structural damage -- the floor, an existing drain pan, a waste receptor, or to the outdoors. Pipe should not terminate more than 6" from floor, pan or waste receptor.

GOOD: T&P discharge should be piped within 6" of the floor or to outdoors

BAD: T&P discharge should flow with gravity and be observable

BAD: T&P discharge should not be piped into drainage system

7.8102.3f - Dielectric unions

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership
Specification(s):
Dielectric unions will be installed to accepted industry standards, in accordance with the IRC, and according to manufacturer specifications

Objective(s):
Break the stray voltage electrical circuit through the storage tank

7.8102.3g - Backflow prevention and pressure regulator

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Specification(s):
Backflow prevention will be installed in accordance with manufacturer specifications

House water pressure and volume will be verified as sufficient to be in accordance with manufacturer specifications

All applicable codes will be followed

Objective(s):
Protect the water supply from contamination

Provide for sufficient volume and pressure

7.8102.3h - Thermal efficiency

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Specification(s):
Any accessible hot water lines at the appliance will be insulated to meet IRC or local requirements, whichever is greater

Objective(s):
Reduce line losses
Materials:
1. Foam pipe insulation
2. Spray adhesive
3. Zip ties

Hot water pipe insulation requirements are found in Chapter 11 of the International Residential Code, Section N1103.4.2 (R403.4.2). The code calls for a minimum of R-3. As a best practice, R-4 and R-5 pipe insulation is available through mechanical and industrial suppliers.

Maintain proper clearances from the water heater vent when installing foam pipe insulation.

7.8102.3i - Required combustion air

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Specification(s):
Recommendations will be made to install all on-demand appliances as sealed combustion.

If not possible:

Combustion and ventilation (excess air) requirements of gas-fired appliances, including provision of outside and inside air to account for building tightness, will be provided.

The minimum required volume shall be 50 cubic feet per 1,000 Btu/h in accordance with IRC.

If needed, additional combustion air will be provided in accordance with IRC.

Objective(s):
Ensure adequate combustion air for operation of the appliance

Best Practice

Best practice is to install on-demand water heaters as direct-vent units

If not installed as direct vent, refer to notes and images on next page for required combustion air

To determine adequate combustion air: add up the input Btus of all combustion appliances in the space and divide by 20. The result is the minimum required air volume in cubic feet (50 cubic feet per 1,000 input Btus). If the available volume is less than 50 cubic feet per 1,000 input Btus, provide additional combustion air as listed below for each circumstance, in accordance with the 2012 IRC G2407.

Image 1: For homes with one permanent opening, see 2012 IRC: G2407.6.2 (304.6.2): a minimum free area of 1 in² per 3,000 Btu/h (734 mm²/kW) of total input rating of all appliances

Image 2: For homes with two permanent vertical duct openings, see 2012 IRC G2407.6.1 (304.6.1): a minimum free area of 1 in² per 4,000 Btu/h (550 mm²/kW) of total input rating of all appliances

Image 3: For homes with two permanent horizontal duct openings, see 2012 IRC G2407.6.1 (304.6.1): a minimum free area of 1 in² per 2,000 Btu/h (1,100 mm²/kW) of total input rating of all appliances
7.8102.3j - Venting of flue gases

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Specification(s):
Combustion byproducts will be removed in accordance with IRC and manufacturer specifications

Objective(s):
Ensure the safety and durability of the venting system

Follow manufacturer's venting instructions for on-demand appliances. Local codes may be more stringent than the International Residential Code (Section G2407), which governs venting of gas appliances,

Do not locate vent terminals near dryer vents.
Avoid terminal location near a dryer vent

Leave 12" between a vent terminal and any non-mechanical building vent or combustion air inlet from another appliance

Leave 12" between vent terminals and any operable door or window

Allow 12" clearance from the edge of a vent to any inside corner of the building

Allow 12" between any two vent terminals

Install vent terminal at least 3 feet higher than any mechanical air inlet that is closer than 10 feet away horizontally

Leave 60" between terminals that are in line vertically

Install vent terminals at least 36" below any eave, soffit, porch, or deck within 24 horizontal inches of center of vent

Install vent at least 36" above grade, porch, deck, veranda, or snow line

7.8102.3k - Flue gas testing

Desired Outcome:

Missouri Department of Natural Resources Division of Energy
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Specification(s):
Undiluted flue gases will be checked with a calibrated combustion analyzer in accordance with BPI-1100-T

If combustion is not in compliance with BPI-1100-T, diagnostics and adjustments will be done to manufacturer specifications or local codes

Objective(s):
Confirm that combustion is occurring safely with maximum efficiency

Test flue gases with properly calibrated equipment

Tools:
1. Properly calibrated combustion analyzer

The combustion analyzer shall be calibrated in accordance with the manufacturer’s recommendations with available documentation traceable to the individual device.
7.8102.3l - Electric and fossil fuel supply

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Specification(s):
Electric or fossil fuel supply components will be installed to accepted industry standards as per IRC, the NFGC, NFPA 31, 54, and 58 for gas and oil, or NFPA 70 National Electric Code for electric

Energy input required by the appliance will be in accordance with manufacturer specifications

Objective(s):
Provide sufficient fuel to the water heater burner or element

7.8102.3m - Cold water supply

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Specification(s):
The volume and pressure of the water supplied to the appliance will be in accordance with manufacturer specifications

Objective(s):
Provide sufficient volume and pressure of water to the appliance
7.8102.3n - Discharge temperature

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership.

Specification(s):
Discharge temperature will be set in accordance with manufacturer instructions and in compliance with local codes.

Use extreme caution when temperature setting is above 120°F.

Objective(s):
Ensure safe hot water supply temperature to fixtures.

![Temperature Comparison](image)

Tools:
1. Thermometer
2. Cup or bowl

Use a thermometer to measure hot water temperature. 120°F is the recommended setting.

7.8102.3o - Commissioning of system

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership.

Specification(s):
The following will be checked once the system has been connected and filled:
• Safety controls
• Combustion safety and efficiency
• Operational controls
• Fuel and water leaks
• Cycle unit
• Local code requirements

Manufacturer specifications and all relevant industry standards will be met in commissioning

Objective(s):
Ensure system functions safely with lowest possible cost of ownership

7.8102.3p - Ambient CO

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Specification(s):
All homes with combustion appliances or an attached garage will have a carbon monoxide (CO) alarm

Objective(s):
Ensure occupant health and safety

Best Practice
Carbon Monoxide alarms should be installed according to local codes

Best Practice
Alarms should be mounted near sleeping areas--such as the one marked in red
7.8102.3q - Occupant education

Desired Outcome:
Safe and reliable hot water source provided that meets occupant needs at lowest possible cost of ownership

Specification(s):
Completed work will be reviewed

Occupants will be educated on the safe and efficient operation and maintenance of the system, including:

- Adjustment of water temperature and target temperature in accordance with local code
- Operation of backflow preventer and pressure regulator (no occupant maintenance required)
- Importance of keeping operating manuals accessible

Objective(s):
Ensure occupant is informed of the safe, efficient operation and maintenance of the system
7.8103.1 - Storage-Type Appliance

Desired Outcome:
Safe, reliable, and efficient operation of the appliance maintained

Note:
The authority having jurisdiction may require that a licensed professional perform certain tasks outlined in this detail.

7.8103.1a - Health and safety

Desired Outcome:
Safe, reliable, and efficient operation of the appliance maintained

Specification(s):
Combustion safety testing will be performed in accordance with the Health and Safety Chapter of the Standard Work Specifications for Single-Family Housing or other equivalent practice

Electrical components will be verified to comply with NEC (e.g., no electrical box connector, no disconnect, improperly sized breaker and wire)

Objective(s):
Identify potential health and safety issues

Complete combustion safety testing to ensure healthy, safe work environment

When completed work, retest to verify home is still healthy and safe
Tools:
1. Personal CO monitor
2. Combustion analyzer with probe
3. Manometer
4. Smoke pencil
5. Mirror
6. Stopwatch, timer, or watch with second hand

Materials:
1. CO alarm
2. Fasteners

See also SWS 2.0201.2a-2.0299.1i for all Combustion Safety details and SWS 2.0602.2c for Electrical Safety.

7.8103.1b - Visual inspection

Desired Outcome:
Safe, reliable, and efficient operation of the appliance maintained

Specification(s):
Inspection will be conducted to show compliance with the IRC, including but not limited to:

- Water or fuel leaks
- Damaged wiring
- Venting issues with draft and condensation (e.g., soot, rusting of flue pipe, burned paint or wires, efflorescence)
- Corrosion (e.g., rust, mineral deposits)
- General condition of components

Objective(s):
Determine needed repairs or maintenance
Inspect for rust, corrosion, and dust around draft diverter. Verify diverter is centered and fastened. Check T&P valve.

Inspect for signs of flame rollout, thermostat and gas valve condition, and proper T&P relief valve termination.

Tools:
1. Flashlight
2. Inspection mirror

Check draft diverter alignment

Inspect for rust, corrosion, and leaks

7.8103.1c - Thermal efficiency

Desired Outcome:
Safe, reliable, and efficient operation of the appliance maintained

Specification(s):
Water heater storage tanks shall have a minimum R-value of R-24

Added insulation will not obstruct the unit’s draft diverter, pressure relief valve, thermostats, hi-limit switch, plumbing pipes or elements, and thermostat access plates

The first 6’ of inlet and outlet piping will be insulated in accordance with IRC or local requirements,
whichever is greater

Objective(s):
Reduce standby losses from near tank piping and storage tank
Ensure insulation does not make contact with flue gas venting

Tools:
1. Scissors
2. Utility knife
3. Outward clinching staple gun

Materials:
1. Insulation blanket
2. Plastic zip ties
3. Tape
4. Staples

State of Missouri DOE variance 1/29/18: When cost effective to install, Missouri will require water heater tank insulation with a minimum R-Value of 11.

Determine the R-value of the existing water heater by A) searching the internet using the model number or B) measuring the thickness of the existing insulation and multiplying by 3.14 per inch for fiberglass or 6.25 per inch for foam. Add insulating wrap to achieve at least R-24. R-values may be added, so a tank with a factory-installed R-value of R-6 would need an additional R-18 to reach the desired value of R-24.

Maintain 2" clearance between insulation and the draft diverter. Cut out around thermostats, pressure relief valves, and other items listed in the specification.
Check occupant's water heater model to see what r-value is built-in
Blanket does not obstruct draft diverter or plumbing pipes and elements
Wrap does not obstruct ventilation, thermostat access plate, hi-limit switch, or fuel line
Data plate should still be accessible after wrapping
Both hot and cold water pipes should be insulated to R-3 for first 6ft

7.8103.1e - Temperature and pressure relief valve

Desired Outcome:
Safe, reliable, and efficient operation of the appliance maintained

 Specification(s):
Correct temperature and pressure relief valve will be installed in compliance with IRC and according to manufacturer specifications

Temperature and pressure relief valve discharge tube will be installed in accordance with IRC

Objective(s):
Discharge excessive energy (pressure or temperature) from storage tank to safe location
Water heaters should be not capped of at t&p valve

T&P discharge should be piped to a safe and observable location

Tools:
1. Pipe wrench
2. Hacksaw

Materials:
1. PVC
2. Plumber’s epoxy

Check local jurisdictional codes. Paraphrased from 2012 IRC P2803.6.1: Temperature and pressure relief valve discharge pipes should not be connected to drainage system. T&P discharge pipes should be a clean line without valve or tee, flowing with gravity to an observable and safe location that cannot cause personal injury or structural damage -- the floor, an existing drain pan, a waste receptor, or to the outdoors. Pipe should not terminate more than 6" from floor, pan or waste receptor.

GOOD: T&P discharge should be piped within 6" of the floor or to outdoors

BAD: T&P discharge should flow with gravity and be observable

BAD: T&P discharge should not be piped into drainage system

7.8103.1f - Maintenance records

Desired Outcome:
Safe, reliable, and efficient operation of the appliance maintained

Specification(s):
Occupants will be advised to keep records of all maintenance done to their system

Copies of or access to installation and operation manuals will be provided

Objective(s):
Provide a history of system installation and maintenance to improve chance of successful future maintenance or repair

7.8103.1g - Occupant safety

Desired Outcome:
Safe, reliable, and efficient operation of the appliance maintained

Specification(s):
Carbon monoxide (CO) alarms will be installed in each dwelling in accordance with ASHRAE 62.2 and authority having local jurisdiction

Occupant will be provided information regarding the health effects and risk of high CO concentrations as well as a list of monitors that can provide more detail regarding CO levels

Objective(s):
Ensure occupant life safety

Inform occupant regarding possible CO hazards

7.8103.1h - Occupant education

Desired Outcome:
Safe, reliable, and efficient operation of the appliance maintained

Specification(s):
Completed work will be reviewed

Occupants will be educated on the safe and efficient operation and maintenance of the system, including:

- Adjustment of water temperature and target temperature in accordance with local code
- Periodic drain and flush
- Periodic inspection, maintenance, or replacement of anode rod
Objective(s):
Ensure occupant is informed of the safe, efficient operation and maintenance of the system
7.8103.2 - On-Demand Appliance

Desired Outcome:
Safe, reliable, and efficient operation of the appliance maintained

Note:
The authority having jurisdiction may require that a licensed professional perform certain tasks outlined in this detail.

7.8103.2a - Health and safety

Desired Outcome:
Safe, reliable, and efficient operation of the appliance maintained

Specification(s):
Combustion safety testing will be performed in accordance with the Health and Safety Chapter of the Standard Work Specifications for Single-Family Housing or other equivalent practice

Electrical components will be verified to comply with NFPA 70 National Electric Code (e.g., no electrical box connector, no disconnect, improperly sized breaker and wire)

Objective(s):
Identify potential health and safety issues

![On-demand water heater](Image)

Safe
On-demand water heater

Best Practice
Check carbon monoxide levels in the appliance vent
Tools:
1. Personal CO monitor
2. Combustion analyzer with probe
3. Manometer
4. Smoke pencil

Materials:
1. CO alarm
2. Fasteners

See also SWS 2.0201.2a-2.0299.1i for all Combustion Safety details and SWS 2.0602.2c for Electrical Safety.

7.8103.2b - Visual inspection

Desired Outcome:
Safe, reliable, and efficient operation of the appliance maintained

Specification(s):
Inspection will be conducted to show compliance with the IRC, including but not limited to:

- Water or fuel leaks
- Damaged or missing pipe insulation and tank insulation, where applicable
- Damaged wiring
- Venting issues with draft and condensation (e.g., soot, rusting of flue pipe, burned paint or wires, efflorescence)
- Corrosion (e.g., rust, mineral deposits)
- General condition of components

Objective(s):
Determine needed repairs or maintenance

Check installation and ensure it meets manufacturer's instructions and local codes
Inspect for rust, corrosion, and dust around draft diverter. Verify diverter is centered and fastened. Check T&P valve.

Check draft diverter alignment.

Inspect for rust, corrosion, and leaks.

Inspect for signs of flame rollout, thermostat and gas valve condition, and proper T&P relief valve termination.

7.8103.2c - Temperature and pressure relief valve

Desired Outcome:
Safe, reliable, and efficient operation of the appliance maintained

Specification(s):
Correct temperature and pressure relief valve will be installed in compliance with IRC and according to manufacturer specifications.

Temperature and pressure relief valve discharge tube will be installed in accordance with IRC.

Objective(s):
Discharge excessive energy (pressure or temperature) from storage tank to safe location.
Unsafe Water heaters should be not capped off at T&P relief valve

Safe T&P discharge should be piped to a safe and observable location

Tools:
1. Pipe wrench
2. Hacksaw or tubing cutter
3. Propane or MAPP gas torch

Materials:
1. CPVC or copper piping and fittings
2. CPVC primer and cement
3. Flux, solder, and emery cloth for sweating copper fittings
4. Teflon tape or pipe thread sealing compound

Check local jurisdictional codes. Paraphrased from 2012 IRC P2803.6.1: Temperature and pressure relief valve discharge pipes should not be connected to drainage system. T&P discharge pipes should be a clean line without valve or tee, flowing with gravity to an observable and safe location that cannot cause personal injury or structural damage -- the floor, an existing drain pan, a waste receptor, or to the outdoors. Pipe should not terminate more than 6” from floor, pan or waste receptor.

GOOD: T&P discharge should be piped within 6" of the floor or to outdoors

BAD: T&P discharge should flow with gravity and be observable

BAD: T&P discharge should not be piped into drainage system
7.8103.2d - Flue gas testing

Desired Outcome:
Safe, reliable, and efficient operation of the appliance maintained

Specification(s):
Undiluted flue gases will be checked with a calibrated combustion analyzer in accordance with BPI-1100-T

If combustion is not in compliance with BPI-1100-T, diagnostics and adjustments will be done to manufacturer specifications or local codes

Objective(s):
Perform combustion testing

Best Practice
Test flue gases at outlet of vent to verify carbon monoxide levels are within specifications

Tools:
1. Properly calibrated combustion analyzer
Verify that calibration date is current on combustion analyzer

Test flue gases for carbon monoxide at outlet of vent

Verify that carbon monoxide levels are within specifications

7.8103.2e - Required combustion air

Desired Outcome:
Safe, reliable, and efficient operation of the appliance maintained

Specification(s):
If sealed combustion has not been installed:

- Combustion and ventilation (excess air) requirements of gas-fired appliances, including provision of outside and inside air to account for building tightness, will be provided
- The minimum required volume will be 50 cubic feet per 1,000 Btu/h in accordance with 2012 IRC G2407.5.1
- If needed, additional combustion air will be provided in accordance with IRC

Objective(s):
Ensure adequate combustion air for operation of the appliance
Calculate available combustion air for natural draft appliances

Best Practice
See Notes and images on next page for required combustion air

Tools:
1. Calculator
2. Tape measure

To determine adequate combustion air: add up the input Btus of all combustion appliances in the space and divide by 20. The result is the minimum required air volume in cubic feet (50 cubic feet per 1,000 input Btus). If the available volume is less than 50 cubic feet per 1,000 input Btus, provide additional combustion air as listed below for each circumstance, in accordance with the 2012 IRC G2407.

Image 1: For homes with one permanent opening, see 2012 IRC: G2407.6.2 (304.6.2): a minimum free area of 1 in² per 3,000 Btu/h (734 mm²/kW) of total input rating of all appliances

Image 2: For homes with two permanent vertical duct openings, see 2012 IRC G2407.6.1 (304.6.1): a minimum free area of 1 in² per 4,000 Btu/h (550 mm²/kW) of total input rating of all appliances

Image 3: For homes with two permanent horizontal duct openings, see 2012 IRC G2407.6.1 (304.6.1): a minimum free area of 1 in² per 2,000 Btu/h (1,100 mm²/kW) of total input rating of all appliances
7.8103.2f - Venting of flue gases

Desired Outcome:
Safe, reliable, and efficient operation of the appliance maintained

Specification(s):
Condition of venting will be inspected in accordance with Section 504 IFGC, NFPA 54, or NFPA 58 for gas water heaters or NFPA 31 for oil water heaters, and authority having local jurisdiction

Objective(s):
Verify proper venting of flue gases

![Inspect direct vents for proper connections, rust, corrosion, and clearances](image1)
![Inspect direct venting for proper connections, rust, corrosion, and clearances](image2)

Tools:
1. Flashlight
2. Inspection mirror

Check that all connections are secure, free of rust and corrosion, and that vents are made from the proper material. Verify that sealed combustion units are installed as direct vents, that is, with both combustion air intakes and exhaust gas vents connected.

Check that terminal locations are in accordance with the IRC, Section G2407, manufacturer's instructions, and/or local codes.
Verify 12" between a vent terminal and any non-mechanical building vent or combustion air inlet from another appliance.

Check that there is 12" between vent terminals and any operable door or window.

Ensure 12" clearance from the edge of a vent to any inside corner of the building.

Verify 12" between any two vent terminals.

Verify vent terminals are at least 3 feet higher than any mechanical air inlet closer than 10 feet away horizontally.

Ensure there is 60" between terminals in line vertically.

Verify vent terminals are 36" below any eave, soffit, porch, or deck within 24 horizontal inches of center of vent.

Ensure that vents are at least 36" above grade, porch, deck, veranda, or snow line.

7.8103.2g - Fuel supply

Desired Outcome:
Safe, reliable, and efficient operation of the appliance maintained.
Specification(s):
Condition of fuel supply components will be checked in accordance with NFPA 31 for oil, NFPA 54 for gas, NFPA 58 for propane, or NFPA 70 National Electric Code for electric, and authority having jurisdiction

Objective(s):
Verify sufficient fuel to the water heater burner and element

Tools:
1. Flashlight

Tools:
Inspect gas lines for corrosion, leaky fittings, worn flex lines, sediment traps and drip legs, and kinked copper
Inspect LP gas tanks for corrosion, proper location, leaky fittings, and kinked or damaged copper

7.8103.2h - Cold water supply

Desired Outcome:
Safe, reliable, and efficient operation of the appliance maintained
Specification(s):
Water supplied to the appliance will be of sufficient volume and pressure to be in accordance with manufacturer specifications

Objective(s):
Verify sufficient volume and pressure of water to the appliance

Best Practice
Testing water supply pressure

Tools:
1. Water pressure gauge

Check manufacturer's specifications for flow and pressure requirements. System pressure may be easily measured with a pressure gauge attached to a hose bib or faucet. Pipe sizing calculations (to ensure adequate flow rates) are best left to a licensed plumber or mechanical contractor.

7.8103.2i - Discharge temperature

Desired Outcome:
Safe, reliable, and efficient operation of the appliance maintained

Specification(s):
Discharge temperature will be set not to exceed 120°F or in accordance with local code, whichever is lower

Objective(s):
Ensure safe hot water supply temperature to fixtures
Unsafe Water heaters producing water over 120 degrees raise heating costs

Safe Water heaters should produce water under 120 degrees to prevent scalding

Tools:
1. Thermometer

Test temperature of hot water at faucets in house

Hot water temperatures should not exceed 120 degrees Fahrenheit

Adjust water heater settings and insulate as needed

After adjustment and insulation, retest to verify temp is under 120 degrees
7.8103.2j - Test the system safety and operation

Desired Outcome:
Safe, reliable, and efficient operation of the appliance maintained

Specification(s):
The following will be tested:

- Safety controls (e.g., water, air pressure switches)
- Combustion safety and efficiency
- Operational controls
- Fuel and water leaks
- Unit runs through complete cycle
- Local code requirements

Manufacturer specifications and all relevant industry standards will be met

Objective(s):
Ensure system functions safely with lowest possible cost of ownership

7.8103.2k - Maintenance records

Desired Outcome:
Safe, reliable, and efficient operation of the appliance maintained

Specification(s):
Occupants will be advised to keep records of all maintenance done to their system

Copies of or access to installation and operation manuals will be provided

Objective(s):
Improve chance of successful future maintenance or repair

7.8103.2l - Occupant health and safety

Desired Outcome:
Safe, reliable, and efficient operation of the appliance maintained

Specification(s):
All homes will have a carbon monoxide (CO) alarm

Objective(s):
Ensure occupant health and safety

7.8103.2m - Occupant education

Desired Outcome:
Safe, reliable, and efficient operation of the appliance maintained

Specification(s):
Completed work will be reviewed

Occupants will be educated on the safe and efficient operation and maintenance of the system, including:

- Adjustment of water temperature
- Target temperature in accordance with local code

Objective(s):
Ensure occupant is informed of the safe, efficient operation and maintenance of the system