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EXECUTIVE SUMMARY 

INTRODUCTION 

 This Report presents the results of the remedial investigation (RI) conducted at a former fuel cycle 
facility that is located within 228 acres of property in Hematite, Missouri, and is currently owned by the 
Westinghouse Electric Company, LLC (WEC). WEC ceased facility operations in June 2001 and is 
proceeding with Site characterization, remediation, and facility decommissioning. This Report was 
prepared by Science Applications International Corporation (SAIC) under contract to WEC. 

 As used throughout this document, the “Hematite Facility” refers to the central portion of the property, 
encompassing the historic primary operations area, Site Pond and burial pits area (approximately 18 acres) s, 
while the “Hematite Site” refers to the “Hematite Facility,” and other areas which were the focus of this 
investigation based on potential impacts by previous Facility  operations. The term “Property” refers to the 
entire 228 acres of land owned by Westinghouse. 

 The objective of this RI is to establish an understanding of the geology, hydrology, and the nature 
and extent of contamination in surface water, soils, sediment, and groundwater for the Hematite Site. 
Characterization data collected during the RI are being used in risk assessment studies that will quantify 
the impact of contamination associated with previous operations on human health and the ecological 
environment. The results of the baseline risk assessment will be covered under a separate report. Data 
obtained during this investigation will be used to facilitate development of feasibility studies for selection 
of appropriate alternatives for remediation. Coupled with process knowledge for the Hematite Facility and 
known potential source areas for contaminants, this evaluation has led to the development of a conceptual 
site model (CSM) from which the fate and transport of contaminants in groundwater have been assessed. 
Finally, the CSM has become the basis from which a groundwater flow and transport model has been 
constructed and calibrated against empirical data. 

 The Hematite Facility was originally constructed as the Mallinckrodt Chemical Works in 1955. The 
Facility became operational in July 1956, producing uranium metals for the nuclear fuel program of the 
U.S. Navy. Throughout its history, the manufacture of uranium metal and compounds from natural and 
enriched uranium was the primary activity at the Facility.  Operations included the conversion of uranium 
hexafluoride gas of various 235U enrichments to uranium oxide, uranium carbide, uranium dioxide pellets, 
and uranium metal. Although uranium material production was the primary function at the Hematite 
Facility, records indicate secondary activities such as uranium scrap recovery and a limited amount of 
work with thorium compounds as part of early research into the use of thorium in the fuel cycle.  In 
addition to the nuclear materials processed at the Hematite Facility, there was a variety of non-nuclear 
chemical products stored on-Site and used in many of the processes. Those with the greatest potential for 
contaminating surface water, soils, and groundwater at the Hematite Facility because of leaks (from 
storage tanks or process pipelines) or waste disposal activities (e.g., Evaporation Ponds and the Burial 
Pits) include strong mineral acids (hydrochloric, hydrofluoric, and nitric) and chlorinated organic solvents 
[perchloroethylene (PCE) and trichloroethylene (TCE)]. A number of potential “areas of concern” have 
been identified at the Hematite Site and include those locations where these (and other) potential 
contaminants were stored, used, and/or disposed.  
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SUMMARY OF GEOLOGIC AND HYDROLOGIC CONDITIONS 

 The geologic framework of the Hematite Site is dominated by two key bedrock formations, the 
Jefferson City-Cotter Dolomite and the Roubidoux Formation (sandy dolostone and sandstone) that 
underlie the Hematite Site. These formations dip gently toward the northeast. The regional landscape is 
highly dissected by streams yielding topographic relief in excess of 150 ft locally. The Hematite Facility 
is built upon terrace/alluvial flood plain sediments overlying bedrock within the valley carved by Joachim 
Creek, which is located approximately 1000 ft south of the Facility. These sediments include 10 to 20 ft 
of fine-grain material underlain by 5 to 20 ft of coarser-grain sands and gravels. 

 In the unconsolidated terrace/alluvial flood plain sediments (herein referred to as the overburden), 
groundwater flow is chiefly confined to the basal, coarse-grain unit and is in a southeastward direction 
from the Hematite Facility toward Joachim Creek where it discharges. A groundwater mound is 
associated with the northeast corner of the Hematite Facility and has a significant impact on the 
potentiometric surface. Groundwater flow in the upper Jefferson City-Cotter Dolomite appears to be 
affected by the mounding, and components of flow radiate from the Hematite Facility toward the 
northeast (along bedding planes) and toward the southeast (in a transmissive zone) within this bedrock 
unit. Below the Jefferson City-Cotter Dolomite, the current direction of groundwater flow appears to 
reflect a northeasterly direction, which is consistent with the regional groundwater flow direction in the 
Roubidoux Formation.  

 In this RI report, several hydrostratigraphic units (HSUs) in bedrock have been defined. In 
descending order of depth, these are the Jefferson City-Cotter, Jefferson City-Roubidoux contact zone, 
and Roubidoux HSUs, respectively.  

 Vertical head gradients are downward from the shallow to deep overburden. Between the deep 
overburden, and Jefferson City-Cotter HSU, gradients are downward in the vicinity of the 
Hematite Facility and generally upward near Joachim Creek. Vertical gradients tend to be upward from 
the Jefferson City-Cotter HSU and deeper HSUs. However, until approximately mid-2004, this gradient 
was reversed (i.e., downward) as a result of the significant lowering of heads in the Roubidoux 
Formation. A possible reason for lower heads in the deeper HSUs was the pumping of groundwater from 
the Roubidoux Formation by water supply wells in the city of Festus.  

SUMMARY OF CONTAMINATION AT THE HEMATITE SITE 

 Most constituents (radionuclides, metals, and organics) at the Hematite Site are closely associated 
with the footprint of the Hematite Facility and disposal sites within the Hematite Facility.  

 Inorganic constituents were elevated in surface soil, soil and groundwater at known waste areas/areas 
of concern within the Hematite Site. These include: the Evaporation Ponds, Deul's Mountain, soils under the 
buildings, outdoor areas adjacent to buildings, the Burial Pits and the Site Pond. Because the elevated 
metals concentrations in the groundwater are localized, this suggests that groundwater migration of 
inorganics is limited and not as extensive as that of chlorinated solvents. There was no indication of 
metals contamination in the bedrock groundwater.  

 Sediment data indicate the presence of some inorganics in the Site Pond, Site Creek and Northeast Site 
Creek. However, the inorganics were generally not detected in the surface water samples from the Site, 
suggesting that migration of inorganics through surface water is limited or does not occur.  

 Technetium-99 (99Tc) and, to a lesser extent, uranium is evident in soils, but contamination is also 
associated with known waste disposal areas (the Evaporation Ponds, Deul's Mountain, Site Pond, Burial 
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Pits) and soil underneath process buildings, and even where migration to the subsurface has occurred, 
there is little or no evidence of lateral migration away from these areas. Comparison of the uranium and 
99Tc groundwater data with chlorinated volatile organic compound (VOC) results indicates that the 
radionuclides have not migrated as extensively as the VOCs.  

 Several sediment samples from Site Pond were found to contain significant contamination with 
uranium and 99Tc. However, 99Tc was not detected in any of the surface water samples from the Site. 
Furthermore, uranium activities in surface water are elevated in the Site Pond but decrease significantly in 
the Site Creek downstream of the Site Pond dam. These data suggest that there is no to minimal migration 
of these radionuclides via surface water. 

 The principal organic contaminants in sediment and soil are PCE and TCE. The distribution of PCE 
and TCE in the groundwater and soil samples appear to reflect one or more source areas associated with 
the Hematite Facility and nearby disposal areas, although contaminated soils extend southeastward from 
the Hematite Facility toward Joachim Creek and probably reflect migration of contaminated groundwater 
from which sorption to soil organic matter has occurred. Dense, nonaqueous-phase liquid (DNAPL) was 
confirmed at one location under a building at the Hematite Facility based on elevated concentrations of 
PCE.  

 Contamination of groundwater with VOCs is widespread. PCE, TCE, and their degradation products 
are commonly observed. A number of locations have sufficiently elevated PCE or TCE concentrations to 
suggest the nearby presence of DNAPL. PCE and TCE plumes in the overburden originate at the Hematite 
Facility and extend southeastward toward Joachim Creek. One component of contamination in the Jefferson 
City-Cotter HSU has migrated in a southeasterly direction beneath Joachim Creek; a second component has 
migrated down dip from the Hematite Facility towards the northeast. Deeper contamination in bedrock only 
has been confirmed in association with private wells PW-19, PW-16, and PW-06 in a residential community 
to the southeast of the Hematite Facility across Joachim Creek and with PW-03 located east-northeast of the 
Hematite Facility. PW-06, PW-16, and PW-19 are no longer used as domestic water supply wells and have 
been converted to dual-completion groundwater monitoring wells as part of this RI. 

 Polycyclic aromatic hydrocarbons also are commonly found in surface and subsurface soil samples 
from on-Site locations. They are common products of combustion of coal and other fuels, and also 
frequently are associated with asphalt-paving material. Their presence is likely from one or a combination 
of these sources. Localized occurrences of dioxin, polychlorinated biphenyls, and petroleum 
contamination also were observed. 

 The presence of organic constituents in surface water is rarely encountered except for several low-level 
detections of PCE and TCE downstream from the Hematite Facility.  Methylene chloride was also detected 
in a number of surface water samples but these detections were associated with method blanks, suggesting 
that the results represent common laboratory contaminants rather than Site conditions. 

 Biological degradation of PCE and TCE is occurring at the Hematite Site, but appears not to have 
proceeded past the production of 1,1-dichloroethylene (DCE); cis-1,2-DCE; and trans-1,2-DCE, except in 
relatively few samples. 
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CONCEPTUAL SITE MODEL AND NUMERICAL MODELING 

 The CSM that was developed for this RI focuses on the following key conclusions: 

• Flow and transport in a southeasterly direction within the overburden is facilitated by a hydraulic 
gradient caused by groundwater mounding under the Hematite Facility and discharge to the surface 
in Joachim Creek 

• With increasing depth below the surface, flow/transport directions gradually shift from southeasterly 
(overburden), to a blend of southeasterly and a regionally imposed northeasterly component 
(Jefferson City-Cotter HSU), and finally to a regional northeasterly direction (Jefferson City-
Roubidoux contact zone and Roubidoux HSUs) 

• Contaminant transport in all geologic units projects back to the footprint of the Hematite Facility 
(and associated disposal areas) as the ultimate source area 

 Flow and contaminant migration in bedrock at the Hematite Site may have been potentially impacted 
by pumping in deep production wells operated by the city of Festus. These wells were operational until 
the summer of 2003 and caused regionally extensive drawdown in the Roubidoux Formation of up to 
50 ft in the vicinity of the Hematite Site. In August 2003, the Jefferson County Water Authority brought 
online a new production facility that draws water from the sediments marginal to and underlying the 
Mississippi River using horizontal wells and now provides nearly all of the water needs for the city of 
Festus and other surrounding communities. Startup of this well permitted Festus to place its four 
production wells located on the west side of the city on standby. These wells had been pumping 
approximately 1 million gpd from the lower Roubidoux Formation. Currently, they are used only during 
periods of peak demand in mid- to late summer, or when the collector well is off-line. When 
supplementing production from the collector well, the pumping rate on these wells is much less than 
before August 2003. 

 In the residential community southeast of the Hematite Facility, a number of private wells were 
completed open hole, which provided a hydraulic connection between the Jefferson City Dolomite and 
Roubidoux Formation. Full-capacity pumping of the Festus production wells before the new water facility 
was brought on line in August 2003 probably impacted contaminant distribution at the Hematite Site in 
several ways. First, hydraulic stresses in the Roubidoux Formation were transferred to the upper Jefferson 
City-Cotter Dolomite through these wells (e.g., PW-06, PW-16, and PW-19) and facilitated flow and 
contaminant migration in the Jefferson City-Cotter HSU from the Hematite Facility to the location of the 
wells. Secondly, downward flow of groundwater and contaminants in these wells spread contaminants to 
deeper zones at lower heads imposed by pumping of the Festus production wells. A similar mechanism is 
responsible for vertical migration of contaminants at PW-03. 

 Once the Festus wells were placed on stand by, rebound of water levels in the Roubidoux Formation 
progressed rapidly and the potential for downward flow through the private wells declined. The changes 
in the hydrologic regime since the Festus production wells were no longer pumping at full capacity will 
likely eventually eliminate future downward vertical migration of contamination once water levels 
stabilize in the Roubidoux Formation.  

 A numerical model was constructed for the Hematite Site by: (1) using the CSM to identify 
hydraulic boundaries, (2) defining a suite of five layers corresponding to the shallow and deep overburden 
and the three HSUs in bedrock, and (3) establishing the geometric (e.g., thickness and orientation) and 
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hydraulic properties for each layer. The flow model was calibrated against water level data obtained 
during the RI (i.e., following shutdown of both the private residential and Festus city wells). The principal 
conclusions from the modeling investigation include: 

• The shallow groundwater mound in a localized area (northeastern corner) of the Hematite Facility 
plays a major role in flow/transport in both layers of the overburden as well as in the Jefferson 
City-Cotter HSU. 

• The assignment of reasonable downhole flow rates to the open boreholes in the vicinity of PW-19 is 
essential for creating the observed transport to the southeast in the Jefferson City-Cotter HSU and is 
supportive of the CSM. 

• Particle tracking suggests that contaminant transport directions for layers responding to either the 
locally imposed or regional flow systems can be rationalized with observed contaminant distribution 
patterns. Backward particle tracking from contaminated bedrock wells (BR-08-JC, BR-09-JC, and 
BR-04-JC) suggest that the Burial Pits are the source of contamination in these wells. Particle travel 
times vary depending on the location of their release points within the Hematite Facility. Particles 
“released” within the southwestern part of the Hematite Facility (i.e., the process buildings) tend to 
have longer travel times towards their discharge point (Joachim Creek) when compared to particles 
“released” within the northeastern part of the Hematite Facility (i.e., the Burial Pits). This is due to 
the mounding in the northeastern corner of the Hematite Facility that causes downward migration in 
this area to the transmissive bedrock formations that are conductive and were assumed to have lower 
porosities than the overburden. 

• Contaminant transport modeling of PCE and TCE in groundwater indicates that sorption and 
degradation can significantly attenuate contaminant migration such that organic contamination levels 
can decrease by one to two orders of magnitude within close proximity of the source areas.  

• Contaminant transport modeling of uranium in groundwater indicates very limited spreading of 
contamination from source areas, consistent with what was observed in groundwater sample data. 
The site-specific partition coefficient for uranium is two orders of magnitude higher than the sorption 
coefficient for organics, resulting in significantly less migration for uranium in groundwater at the 
Hematite Site when compared to PCE and TCE. 
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