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5.0 ADDITIONAL SUPPORTING ANALYSIS 
 
 

This Chapter presents additional supporting analysis to the modeled 2018 visibility projections 
provided in Chapter 4.  This supporting analysis may be used by the states in their RHR SIPs, 
along with their factor analysis, to assist in setting their 2018 RPGs for the worst 20 percent days 
and best 20 percent days. 

 
 

5.1 Comparison of CENRAP 2018 Visibility Projections with Other Groups 
 
2018 visibility projections for CENRAP and nearby Class I area have also been performed by the 
other RPOs.  Thus, it is useful to compare the CENRAP 2018 visibility projections with those 
from the other RPOs as a quality assurance (QA) check and to foster confidence in the CENRAP 
modeling results. 
 
 
5.1.1 Comparison of CENRAP, VISTAS, MRPO and WRAP Visibility Projections 
 
The CENRAP 2018 Base G visibility projections were compared to the following other RPO 
visibility projections: 
 

• VISTAS 2018 visibility projections based on their CMAQ 12 km 2002 annual modeling 
results for the 2002 Base G and 2018 Base G2a emissions scenarios. 

• MRPO 2018 visibility projections based on their CAMx 36 km 2002 annual modeling for 
the Run 4 Scenario 1a (R4S1a) emissions scenario. 

• WRAP 2018 visibility results based on their Plan02b and Base18b CMAQ 36 km 
modeling of the 2002 calendar year. 

 
Figure 5-1 displays a DotPlot comparison of the four RPO visibility projections expressed as a 
percentage of achieving the 2018 URP point at CENRAP and nearby Class I areas.  For the four 
CENRAP Class I areas just west of the Mississippi River in Arkansas and Missouri (CACR, 
UPBU, HEGL and MING), 2018 visibility projections are available from the CENRAP, VISTAS 
and MRPO RPOs.  At HEGL, the three RPOs 2018 visibility projections are in close agreement 
with each other (estimated to achieve 99%, 101% and 95% of the 2018 URP point).  The 
CENRAP and VISTAS 2018 visibility projections are also very close at the other three 
Arkansas-Missouri CENRAP Class I areas: CACR (112% and 116%), UPBU (109% and 112%) 
and MING (118% and 114%).  But the MRPO 2018 visibility projections are approximately 12 
to 25 percentage points lower than the CENRAP and VISTAS projections at these three Class I 
areas, with values of 97% to 100%.  The reasons why the MRPO 2018 visibility projections are 
less optimistic than CENRAP and VISTAS are unclear.  However, the MRPO focused on 
visibility projections at their northern Class I areas and likely did not use the latest CENRAP 
emission estimates.  In addition, the CENRAP 2018 visibility projections included BART 
controls on several sources in CENRAP states not included in the MRPO projections.  Such 
BART controls are even more important in those states not covered by CAIR. 
 
For the Breton Island (BRET) Class I area, 2018 visibility projections are available from 
CENRAP and VISTAS.  CENRAP estimates that BRET will achieve 94% of the URP point and 
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VISTAS is slightly less optimistic with an 84% value.  One potential contributor to this is that 
emissions from off-shore marine vessel emissions in the oil and gas production areas of the Gulf 
of Mexico are double counted in the VISTAS Base G modeling.  As these emissions were 
assumed to remain unchanged between 2002 and 2018, the double counting of their emissions 
will result in stiffer RRFs than there should be and consequently less visibility benefits in 2018.  
This double counting also occurred in the CENRAP Base F modeling but was corrected in Base 
G.  The double counting occurred because off-shore marine vessels were present in both the 
MMS off-shore oil/gas development inventory for the Gulf of Mexico and the VISTAS off-shore 
marine vessel inventory for the Pacific and Atlanta Oceans and the Gulf of Mexico.  VISTAS 
intends to correct this double counting in their next round of modeling. 
 
At the two northern Minnesota Class I areas (BOWA and VOYA), the MRPO 2018 visibility 
projections (93% and 92%) exhibit more visibility improvements than CENRAP’s (69% and 
53%).  This is believed to be due to higher contributions to visibility impairment from Canada in 
the CENRAP modeling.  Figure 5-2 displays the CENRAP 2002 Base F total SO2 emissions and 
their differences with the 2018 Base F SO2 emissions.  The SO2 emissions in Alberta Canada 
appear to be much higher and more wide spread when compared to the other provinces in 
Canada and emissions in the U.S. states.  Also, there is a very large SO2 source in northern 
Manitoba (> 105 tons/year).  The Alberta SO2 emissions may be overstated in the CENRAP 
modeling, which would overstate the Canadian contribution to visibility impairment.  The 
western boundary of the MRPO modeling domain was east of the Rocky Mountains so did not 
include Alberta.  CENRAP confirmed that the Alberta emissions and the source in Manitoba 
were present in the emissions provided by Canada. Air parcels from Canada are generally 
associated with clean visibility conditions at the northern Minnesota Class I areas with the worst 
20 percent days generally occurring under conditions with a southerly wind component.  
However, in 2002 some of the worst 20 percent days did occur with transport out of Canada.  For 
example, Figure 5-3 displays back trajectories off of the VIEWS website for two of the worst 20 
percent days at Voyageurs National Park (Julian Days 347 and 332).  These back trajectories 
suggest that the potentially overstated emissions in Alberta would have an impact at VOYA 
during the worst 20 percent days in 2002. 
 
At the VISTAS Mammoth Cave (MACA), Kentucky Class I area, VISTAS, CENRAP and the 
MRPO estimated that 2018 visibility for the worst 20 percent days will achieve, respectively, 
122%, 123% and 102% of the 2018 URP point.  The close agreement between the VISTAS 
(122%) and CENRAP (123%) 2018 visibility projections for MACA is encouraging.  Why 
MRPO is 20 percentage points lower is unclear, but may be due to using earlier versions of the 
VISTAS and CENRAP emissions.  The 2018 visibility projections at Sipsey (SIPS), Alabama 
estimated  by VISTAS (127%) and CENRAP (130%) are also extremely close. 
 
Both the CENRAP and WRAP 2018 visibility projections agree that the WRAP Class I areas fail 
to achieve the 2018 URP point by a wide margin, with values achieving only ~40% or less of the 
2018 URP point.  The CENRAP 2018 visibility projections agrees well with the WRAP values at 
Great Sands (GRSA), Colorado (18% vs. 15%), Badlands (BADL), South Dakota (24% vs. 
31%), Theodore Roosevelt, North Dakota (15% vs. 11%) and Lostwood (LOST), Montana (11% 
vs. 14%).  There is also reasonable agreement between CENRAP and WRAP 2018 visibility 
projections at Salt Creek (SACR), New Mexico (30% vs. 12%), Rocky Mountain (ROMO), 
Colorado (43% vs. 30%), and Wind Cave (WICA), South Dakota (24% vs. 6%).  There are two 
WRAP Class I areas, White Mountains (WHIT) and Wheeler Peak (WEPE), where the WRAP 
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2018 visibility projections estimate that visibility will degrade for the worst 20 percent days (i.e., 
negative percent of achieving the 2018 URP point), whereas CENRAP estimates visibility 
improvements.  The reasons for these differences are unclear. 
 

CMAQ Method 1 predictions with new IMPROVE algorithm at CENRAP+ sites Across RPOs

0%

20%

40%

60%

80%

100%

120%

140%

B
IB

E
1

G
U

M
O

1

W
IM

O
1

C
A

C
R

1

U
P

B
U

1

H
E

G
L1

M
IN

G
1

B
R

ET
1

V
O

Y
A2

BO
W

A1

M
A

C
A

1

S
IP

S
1

IS
LE

1

S
A

C
R

1

W
H

IT
1

W
H

P
E

1

G
R

SA
1

R
O

M
O

1

W
IC

A1

B
A

D
L1

TH
R

O
1

LO
S

T1

Pe
rc

en
t o

f t
ar

ge
t r

ed
uc

tio
n 

ac
hi

ev
ed

CENRAP 36k Base18g/Typ02g

VISTAS 12k 2018g2b/2002gt2a

WRAP 36k Base18b/Plan02b corrected

MwRPO 2018 R4S1a

CENRAP non-CENRAP

Figure 5-1.  DotPlot comparing the CENRAP, VISTAS, MRPO and WRAP 2018 visibility 
projections expressed as a percentage of achieving the 2018 URP goal. 
 
 

 
Figure 5-2.  2002 Base F SO2 emissions (left) as LOG10(tons/year) and differences in 2018 
and 2002 Base F SO2 emissions (tons/year). 
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Figure 5-3.  Exampled back trajectories to Voyageurs National Park for two of the worst 20 
percent days from 2002: December 13, 2002 (Julian Day 347) and November 28, 2002 
(Julian Day 332). 
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5.2 Extinction and PM Species Specific Visibility Projections and Comparisons to 2018 
URP Point 
 
It is useful to examine 2018 visibility projections by PM species to determine how each PM 
component of visibility is changing as both a diagnostic analysis of the visibility projections as 
well as whether species that are associated more with anthropogenic emissions (e.g., SO4 and 
NO3) are being reduced substantially compared to those that are less influenced by 
anthropogenic emissions (e.g., Soil and CM).  However, because deciview is the natural 
logarithm of total extinction, such comparisons can not be made using the deciview scale and 
must be made using extinction.  The linear glidepath from which the 2018 URP points are 
derived are based on deciview, thus to examine corresponding glidepath using extinction the 
curvature associated with the logarithmic transformation of the linear deciview glidepath to 
extinction must be accounted for in the extinction glidepath.   
 
 
5.2.1 Total Extinction Glidepaths 
 
Figure 5-4 displays a total extinction based glidepath for Caney Creek that is based on the EPA 
default deciview linear glidepath counterpart shown in Figure 4-3a.  That is, the deciview linear 
glidepath defined by the line connecting the 26.36 dv Baseline Conditions at 2004 to the 11.58 
dv Natural Conditions in 2064.  The glidepath points in 2008, 2018, 2028, etc. from the linear 
deciview glidepath (Figure 4-3a) are turned into extinction (Bext) [Bext = 10 exp(dv/10)] to 
create the curved extinction glidepath that exactly match the linear deciview glidepath points.  
Note that the 2000-2004 Baseline using the curved extinction glidepath is slightly different than 
if you just converted the deciview baseline to extinction because the logarithm relationship is 
performed before the averaging, but they are extremely close.  Using the extinction curved 
glidepath, the 2018 URP point is a reduction of the Baseline 145.10 Mm-1 to 98.88 Mm-1 (a  
46.22 Mm-1 reduction).  The modeled 2018 visibility projection in extinction is 97.54 Mm-1, a 
47.56 Mm-1 reduction, which achieves 103% of the reduction needed to achieve the 2018 URP 
point.  Note that this compares with achieving 112% of the 2018 URP reduction point when 
using the deciview linear glidepath.  The percent of achieving the 2018 URP point using the 
linear deciview and curved extinction glidepaths will rarely be the same due to the logarithmic 
relationship between the two visibility metrics and the fact that averaging within and across years 
in the deciview calculations occur after the logarithms have been applied.  The greater the 
difference in extinction across the worst 20 percent days in a year and averaged across the years 
in the 2000-2004 Baseline and the greater number of years available from the 2000-2004 
Baseline may result in greater differences in the 2018 URP points using the linear deciview and 
the curved extinction glidepaths.  
 
Appendix F contains total extinction curved glidepaths for all the CENRAP Class I areas and 
Figure 5-5 contains a DotPlot that compares the percent of achieving the 2018 URP point at each 
CENRAP Class I area using the 2018 Base G modeling results and the linear deciview and 
curved extinction glidepaths.  At most CENRAP Class I areas the ability of the 2018 modeling 
results to achieve the 2018 URP point is the same using either the deciview or extinction 
glidepaths.  There are some differences at GUMO, BOWA and VOYA Class I areas which are 
due to these Class I areas having more complete data during the 2000-2004 Baseline period and 
therefore more years in the Baseline than other Class I areas as well as having variations in 
extinction across the worst 20 percent days and years (Appendix F).  In any event, the closeness 
of the ability of the model to achieve the 2018 URP point using either the extinction or deciview 
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glidepath verifies the validity of the extinction based glidepaths and allows for the construction 
of PM species specific glidepaths in extinction to gain insight into how each component of 
extinction is being reduced to achieve a uniform rate of progress toward natural conditions in 
2064.  

Uniform Rate of Reasonable Progress Glide Path
Caney Creek Wilderness - 20% Data Days
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Figure 5-4.  2018 Visibility Projections and 2018 URP Glidepaths in extinction (Mm-1) for Caney 
Creek (CACR), Arkansas and Worst 20% (W20%) days using 2002/2018 Base G CMAQ 36 km 
modeling results. 
 

CMAQ BaseG Method 1 predictions for CENRAP+ sites
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Figure 5-5.  CMAQ 2018 Base G visibility projections and comparison of ability to achieve the 
2018 URP point using the EPA default deciview and alternative total extinction Glidepaths. 
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5.2.2 PM Species specific Glidepaths 
 
The VIEWS website (http://vista.cira.colostate.edu/views/) has posted PM species specific 
Natural Conditions based on the new IMPROVE equation.  Using these PM species specific 
Natural Conditions and the curved extinction glidepaths we can evaluate how well visibility 
extinction achieves the 2018 URP point on a species-by-species basis.  The PM species specific 
glidepaths are constructing starting with a Baseline at 2004 averaging the extinction for each PM 
species measured using the 2000-2004 IMPROVE observations and ending with the Natural 
Conditions in 2064 from the VIEWS website.  Points in the glidepath for the years in between 
2004 and 2064 are constructed based on the relative differences in the 2004 Baseline and 2064 
Natural Conditions PM species extinction such that the total extinction due to all PM species at 
each interim year adds up to the same as the total extinction on the extinction-based glidepath 
(e.g., Figure 5-3).  For example, for the CACR SO4 extinction glidepath the 2018 URP point is 
generated from the 2004 and 2064 SO4 extinction (BSO4) and the 2004, 2018 and 2064 total 
extinction (BTOT) as follows: 
 

BSO4_2018 = BSO4_2004 – [(BSO4_2004 – BSO4_2064)/ 
  (BTOT_2004- BTOT_2064)] x (BTOT_2004 – BTOT_2018) 
 = 87.05 –[(87.05 – 3.20)/(145.10 – 32.16)] x (145.10 – 98.88) 
 = 52.73 Mm-1 
 

Note that the SO4 2018 URP point  in Figure 5-5 and F-1b (52.77 Mm-1)  does not exactly match the 
52.73 Mm-1 calculated due to round off error in the above calculation that only used numbers with 
precision to the nearest hundredth. 
 
As there are larger differences between the Baseline and Natural PM species extinction for some 
species, then the rate of improvement to achieve a species specific 2018 URP point will vary 
across PM species.  For example, current Baseline extinction values for Soil and CM tend to be 
closer to Natural Conditions than extinction due to SO4 and NO3.  Consequently the rate of 
progress to achieve the 2018 URP point for Soil and CM will be less than for SO4 and NO3. 
 
Appendix F contains the PM species specific glidepaths compares them to the modeled 2018 
projections for all CENRAP Class I areas.  The species specific results for the CACR Class I 
area in Figure F-1 are reproduced in Figure 5-6.  The modeled rate of SO4 and NO3 extinction 
reduction is greater than the PM species specific glidepaths and both achieve the species specific 
2018 URP point by achieving 111% and 104% of the reduction needed to achieve the 2018 URP 
point. The modeled rate of extinction improvement at CACR for EC and OC is less than the 
species specific glidepath achieving only 65% and 75% of the reduction needed to achieve the 
species specific 2018 URP point.  The PM species specific glidepath for Soil is flat because the 
Baseline and Natural Conditions (1.12 Mm-1) are the same.  This does not mean that 
anthropogenic emissions of Soil do not contribute on worst 20 percent days at CACR.  It just 
points to a mismatch between the current set of worst 20 percent days and those in 2064 under 
Natural Conditions.  The worst 20 percent days in 2064 under Natural Conditions will be 
dominated by wind blown dust days when Soil and CM may be higher than during the current set 
of worst 20 percent days that are dominated by SO4, NO3 and OMC.  Thus, the Soil and CM 
glidepaths tend to be flatter and in some cases may even have an upward trend for some Class I 
areas (see Appendix F).  Soil is projected to increase at CACR in 2018 so does not achieve its 
species specific URP point.  Little reduction in CM is also seen by 2018.  As discussed 
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previously, this is due in part to incompatibilities between the measured Soil and CM values at 
the IMPROVE monitor and the modeled Soil and CM species.  In the model, a large component 
of the Soil and CM in the inventory is due to paved and unpaved road dust.  These emissions are 
directly related to Vehicles Miles Traveled (VMT).  VMT is projected to increase in future-years 
resulting in increases in road dust emissions.  At the IMPROVE monitor, much of the measured 
Soil and CM is likely due to local dust events that are not simulated by the model using a 36 km 
grid resolution.  Thus, the 2018 projections for Soil and CM are likely applying modeled changes 
due to road dust to local Soil and CM concentrations that in reality are likely natural and should 
remain unchanged in the future year.  This is why alternative 2018 modeled projection 
approaches have been developed that assume that CM and CM and Soil are natural so remain 
unchanged in the future-year (see Section 5.5). 
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Figure 5-6.  2018 Visibility Projections and 2018 URP Glidepaths for SO4 (top left), NO3 (top 
right), EC (middle left), OMC (middle right), Soil (bottom left) and CM (bottom right) in extinction 
(Mm-1) for Caney Creek (CACR), Arkansas and Worst 20 Percent Days using 2002/2018 Base 
G CMAQ 36 km modeling results. 
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Figure 5-7 displays a DotPlot that compares the 2018 projected total and PM species specific 
extinction with the 2018 URP points.  These results show that SO4 is most frequently achieving 
its 2018 URP point at those Class I areas that achieve the deciview URP point.  Reductions in 
NO3 and EC also sometimes achieve their species specific URP point.  
 
There are some anomalies in the species specific projections and glidepaths that bear mention 
and point to areas where better estimates of emissions growth and Natural Conditions are needed 
needed.  The increase in 2018 Soil projections is not an isolated incident at CACR and occurs at 
other CENRAP Class I areas.  There are three CENRAP Class I areas that “achieve” the Soil 
specific 2018 URP point (HEGL, BOWA and VOYA).  An examination of these glidepaths and 
visibility projections (Figures F-4f, F-5f and F-6f) reveals that the current Baseline Conditions 
Soil at these three Class I areas is actually less than the 2064 Natural Conditions so that the 
glidepath is an accent rather than reduction (Figures F-4g, F-5g and F-6g).  In these three cases 
to “achieve” the 2018 URP point the modeling results must increase the projected Soil 
extinction, which is why these three Class I areas “achieve” their 2018 URP point for Soil.  
Clearly, the 2018 URP point for Soil is not very meaningful under these conditions.  The current 
Baseline Conditions for OMC at BRET and BOWA is also less than the Natural Conditions 
resulting in anomalous glidepaths (Figure F-3e and F-4e). 
 
 

CMAQ BaseG Method 1 predictions for CENRAP+ sites
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Figure 5-7.  Ability of total and species specific 2018 visibility projections to achieve 2018 URP 
points. 
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5.3 Alternative 2018 Visibility Projection Software 
 
The CENRAP 2018 visibility projections were made using software developed by the CENRAP 
modeling team.  PM concentrations in the 36 km grid cells containing each of the Class I area 
IMPROVE monitoring sites were extracted using the UCR Analysis Tool.  These modeling data 
were then ported into Excel spreadsheets that also include the filled RHR IMPROVE database 
available from the VIEWS website along with the EPA default Natural Conditions (EPA, 
2003b).  Excel macros are then used to perform the visibility projections using the EPA default 
procedures described in Chapter 4 and alternative procedures described in this Chapter. 
 
EPA is developing a Modeled Attainment Test Software (MATS) program that codifies the 8-
hour ozone, PM2.5 and visibility projection procedures given in EPA’s latest air quality modeling 
guidance (EPA, 2007a).  The June 2007 release of the beta version of MATS is capable of 
performing 8-hour ozone and visibility projections; MATS is still under development for making 
PM2.5 projections.  The June 2007 beta versions of MATS was applied to the CENRAP 2002 and 
2018 Base G 36 km CMAQ results and the resultant 2018 visibility projections were compared 
with the CENRAP values using the EPA default projection approach (see Chapter 4) at 
CENRAP and nearby Class I areas.  The projected 2018 visibility estimates using the CENRAP 
and EPA MATS software are shown in Table 5-1.  The biggest differences in the two 2018 
visibility projections are for the Boundary Waters (BOWA).  Breton Island (BRET), and Mingo 
(MING) Class I areas where MATS produces no 2018 visibility projections. This is because 
there is insufficient capture of valid IMPROVE PM measurements within the 2000-2004 five-
year baseline to generate three years of annual visibility estimates that is the minimum needed to 
develop the Baseline Conditions following EPA’s guidance (EPA, 2003a).  For the CENRAP 
projections, data filling was used to fill out the IMPROVE measurements with sufficient data so 
that Baseline Conditions could be calculated at these three Class I areas.  At 14 of the remaining 
17 Class I areas, the CENRAP and MATS 2018 visibility projections agree exactly to within a 
hundredth of a deciview.  At the three sites that are different (BIBE, GUMO and ISLE) the 
difference is 0.01 dv, which is 0.06 percent or less.  These differences are likely due to round off 
errors in the calculations and are not significant.  These results verify the consistency with the 
CENRAP spreadsheet based and EPA MATS software for projecting future-year visibility 
estimates. 
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Table 5-1.  Comparison of CENRAP and EPA MATS 2018 visibility projections at CENRAP and 
nearby Class I areas. 

  
2018 Visibility 

Projections 

2000-2004 
Baseline 

Conditions 

Site 
MATS 
(dv) 

CENRAP 
(dv) 

MATS 
(dv) 

CENRAP
(dv) 

BADL 16.53 16.53 17.14 17.14 
BIBE 16.70 16.69 17.30 17.30 
BOWA NA 18.30 NA 19.58 
BRET NA 22.72 NA 25.73 
CACR 22.48 22.48 26.36 26.36 
GRSA 12.53 12.53 12.78 12.78 
GUMO 16.36 16.35 17.19 17.19 
HEGL 23.06 23.06 26.75 26.75 
ISLE 19.35 19.36 20.74 20.74 
LOST 19.27 19.27 19.57 19.57 
MACA 25.60 25.60 31.37 31.37 
MING NA 23.71 NA 28.02 
ROMO 13.17 13.17 13.83 13.83 
SACR 17.25 17.25 18.03 18.03 
SIPS 23.57 23.57 29.03 29.03 
THRO 17.40 17.40 17.74 17.74 
UPBU 22.52 22.52 26.27 26.27 
VOYA 18.37 18.37 19.27 19.27 
WHIT 13.14 13.14 13.70 13.70 
WHPE 10.34 10.34 10.41 10.41 
WICA 15.39 15.39 15.84 15.84 
WIMO 21.47 21.47 23.81 23.81 

NA = Not Available 
 
 
5.4 PM Source Apportionment Modeling 
 
The PM Source Apportionment Technology (PSAT) was used to obtain PM source 
apportionment by geographic regions and major source category for the CENRAP 2002 and 
2018 Base E base case conditions.  PSAT uses reactive tracers that operated in parallel to the 
CAMx host model using the same emissions, transport, chemical transformation and deposition 
rates as the host model to account for the contributions of user specified source regions and 
categories to PM concentrations throughout the modeling domain.  Details on the formulation of 
the CAMx PSAT source apportionment can be found in the CAMx user’s guidance (ENVIRON, 
2006; www.camx.com).   
 
 
5.4.1  Definition of CENRAP 2002 and 2018 PM Source Apportionment Modeling 
 
PSAT calculated PM source apportionment for user defined source groups.  Source groups are 
usually defined by specifying a source region map of geographic regions where source 
contributions are desired and providing source categories as input so that source group would 
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consist of a geographic region plus source category (e.g., on-road mobile source emissions from 
Oklahoma).  Although other source group configurations and even individual sources may be 
specified.  For the CENRAP PSAT application, a source region map was used that divided up the 
modeling domain into 30 geographic source regions as shown in Figure 5-8.  The 2002 and 2018 
emissions inventories were divided into six source categories.  The 30 geographic source regions 
consisted of CENRAP and nearby states, with Texas divided into 3 regions, remainder of the 
western and eastern States, Gulf of Mexico, Canada and Mexico.  The original intent of the 
CENRAP PSAT analysis was to obtain separate contributions due to on-road mobile, non-road 
mobile, area, natural, EGU point and non-EGU point sources.  However, the CAMx emissions 
for the PSAT runs were based on the CMAQ pre-merged 3-D emission files.  Since all point 
sources were contained in a single CMAQ pre-merged emissions file, then the separate source 
apportionment modeling of EGU and non-EGU point sources was not possible.  The six source 
categories that were separately tracked in the PSAT PM source apportionment modeling were: 

• Elevated point sources; 
• Low-level point sources (i.e., point source emissions emitted into layer 1 of the model); 
• On-Road Mobile Sources; 
• Non-Road Mobile Sources; 
• Area Sources; and 
• Natural Sources. 

 
Natural Sources included biogenic VOC and NOx emissions from the BEIS3 biogenic emissions 
model, emissions from wildfires and emissions from wind blown dust due to non-agriculture 
land use types. 
 
PM source apportionment in PSAT is available for five families of PM tracers: (1) Sulfate; (2) 
Nitrate and Ammonium; (3) Secondary Organic Aerosols (SOA); (4) Primary PM; and (5) 
mercury.  The CENRAP PSAT 2002 and 2018 applications used three of the PSAT families of 
tracers and did not use the SOA and mercury families.  For SOA, the standard CAMx model 
output was used that partitions SOA into an anthropogenic (SOAA) and biogenic (SOAB) 
components. 
 
The PSAT results were extracted at the CENRAP and nearby Class I areas and the contributions 
for the average of the worst 20 percent and best 20 percent days were processed.  A PSAT 
Visualization Tool was developed that can be used by States, Tribes and others to generate 
displays of the contributions of source regions and categories to visibility impairment for the 
average of the worst 20 percent and best 20 percent days at each CENRAP and nearby Class I 
areas. 
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Figure 5-8.  30 source regions used in the CENRAP 2002 and 2018 CAMx PSAT PM source 
apportionment modeling. 
 
 
5.4.2 CENRAP PSAT Visualization Tool 
 
The PSAT Visualization Tool allows CENRAP States, Tribes and others to visualize the 
CENRAP 2002 and 2018 PSAT modeling results and identify which source regions, categories 
and PM species are contributing to visibility impairment at Class I areas for the average of the 
worst 20 percent and best 20 percent visibility days.  The Visualization Tool is currently 
available on the CENRAP website (http://www.cenrap.org) under Projects.  The Tool can 
generate bar charts of source contributions at Class I areas.  It can be run in a receptor oriented 
mode where it identifies the contributions of PM species and source regions and categories to 
visibility impairment on the worst and best 20 percent days.  It can also be run in a source 
oriented mode to examine an individual source region’s (State’s) contribution to visibility 
impairment at downwind Class I areas on the worst and best 20% days.  The original IMPROVE 
equation is used to convert the PM species concentrations to extinction. 
 
There are 14 air quality analysis metrics in the Tool: 
 

W20% Modeled Bext:  The source region, source category and PM species contributions 
to the extinction (Bext) at a Class I area estimated by the model averaged across the worst 
20 percent days in 2002. 
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W20% Projected Bext:  The source region, source category and PM species contributions 
to the extinction (Bext) at a Class I area projected by the model averaged across the worst 
20 percent days in the 2000-2004 Baseline. 
 
W20% Modeled USAnthro:  The source region, source category and PM species 
contributions to the extinction (Bext) at a Class I area for just U.S. anthropogenic 
emission source categories estimated by the model averaged across the worst 20 percent 
days in 2002. 
 
W20% Projected USAnthro:  The source region, source category and PM species 
contributions to the extinction (Bext) at a Class I area for just U.S. anthropogenic 
emission source categories projected by the model averaged across the worst 20 percent 
days in the 2000-2004 Baseline. 
 
Emissions:  Emissions by source region, source category and PM  precursor.  Precursors 
include SOx, NOx, primary organic aerosol (POA), primary elemental carbon (PEC) 
other primary fine particulate (FCRS+FPRM) and coarse mass (CCRS+CPRM).  
Emissions for four days have been extracted and implemented in the Tool. 
 
Control Effectiveness:  Control effectiveness is defined as the PM contribution divided 
by the emissions of the primary precursor.  For example the SO4 contribution divided by 
the SO2 emissions.   
 

Visualization Tool results are available for visibility contributions on both an absolute (Mm-1) 
and percentage basis.  When looking at contributions at a given Class I area, contributions can be 
examined in terms of PM species, source regions and/or source categories.  Results are available 
for both the current year (2002 modeled or 2000-2004 projected) and future year (2018).  The 
“2002 W20% Project Bext” metric applies the 2002 PSAT modeled source apportionment to the 
observed 2000-2004 Baseline extinction keeping the relative contributions of source groups to 
each PM species (e.g., SO4, NO3, etc.) the same averaged across the 2002 worst 20 percent days 
but scaling their magnitudes up or down based on the ratio of the 2000-2004 Baseline to the 
2002 modeling results.  Similarly, the “2018 W20% Projected” metric uses the relative 
contributions of the 2018 PSAT results from each source group and scales them according to the 
differences in the 2018 projected PM species to the 2018 modeled PM species for the average of 
the worst 20 percent days.  The US Anthropogenic metrics just include source groups associated 
with U.S. man-made emissions (i.e., non-Natural source categories from states and Gulf of 
Mexico source regions) so excludes contributions from Canada and Mexico, Boundary 
Conditions, SOA from biogenic sources and the natural source category (biogenic NOx, 
wildfires and wind blown dust). 

 
 
5.4.3 Source Contributions to Visibility Impairment at Class I Areas 
 
Appendix E displays example contributions of PM species, source regions and source categories 
to visibility impairment for the worst and best 20 percent days at the CENRAP Class I areas.  
Some of the results from Figure E-1 for the CACR Class I area are reproduced in Figures 5-9, 5-
10 and 5-11 below. 
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5.4.3.1 Caney Creek (CACR) Arkansas 
 
2002 visibility impairment for the worst 20 percent days at CACR is primarily due to SO4 from 
elevated point sources that contributes over half (66.3 Mm-1) of the total extinction of 118.8  
Mm-1 (Figure E-1a and 5-8 left).  By 2018, the total extinction at CACR for the worst 20 percent 
days is reduced by approximately one third (38.5 Mm-1) which is primarily due to reductions in 
SO4 extinction from elevated point sources (from 66.3 to 37.3 Mm-1) as well as reductions in 
visibility impairment from on-road and non-road mobile sources.  Even with such large 
reductions in SO4 from point sources in 2018, extinction due to elevated point sources is still the 
highest contributor to visibility impairment on the worst 20 percent days contributing over half 
(41.8 Mm-1) of the total extinction in 2018 of 80.3 Mm-1, with area sources the next most 
important source category  contributing 16.0 Mm-1 (~20%). 
 
The geographic source apportionment for the worst 20 percent says at CACR is shown in Figures 
5-10, E-1c and E-1d. Elevated point sources from the eastern source region is the largest 
contributor in 2002 contributing almost 18 Mm-1 that is reduced by over a factor of three in 2018 
to approximately 5 Mm-1.  By 2018, Arkansas is the largest contributor to extinction at CACR 
for the 20 percent worst days followed by East Texas, the large Eastern U.S. region and then 
SOA due to biogenic sources.  Figures E-1e ranks the source group contributions to extinction on 
the worst 20 percent days at CACR with Elevated Point Sources from East Texas being the 
highest contributor to total extinction, similar results are seen when examining extinction at 
CACR for the worst 20 percent days due to just SO4 and NO3 (Figure E-1f).   
 
For the best 20 percent days at CACR (Figures 5-11, E-1g-j), SO4 is still a major contributor but 
no where near as dominate as seen for the worst 20 percent days, but elevated point is still the 
largest contributing source category  Local contributions from within Arkansas contribute the 
most to the average of extinction across the best 20 percent days at CACR. 
 

Figure 5-9.  PSAT source category by PM species contributions to the average 2000-2004 Baseline 
and 2018 projected extinction (Mm-1) for the worst 20 percent visibility days at Caney Creek 
(CACR), Arkansas. 
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Figure 5-10.  PSAT source region by source category contributions to the average 2000-2004 
Baseline and 2018 projected extinction (Mm-1) for the worst 20 percent visibility days at Caney 
Creek (CACR), Arkansas. 
 
 

Figure 5-11.  PSAT source category by PM species contributions to the average 2000-2004 
Baseline and 2018 projected extinction (Mm-1) for the best 20 percent visibility days at Caney Creek 
(CACR), Arkansas. 
 
 
5.4.3.2 Upper Buffalo (UPBU) Arkansas 
 
The contributions to extinction on the worst 20 percent days at UPBU (Figure E-2) is similar to 
CACR only with less contributions from East Texas and more from Missouri, Illinois and 
Indiana.  By 2018, the top five highest contributing source groups to the average extinction on 
the worst 20 percent days are as follows: Arkansas Elevated Point; SOA from biogenics; 
Boundary Conditions, East Elevated Points, and Illinois Elevated Points (Figure E-2e).  On the 
best 20 percent days at UPBU visibility impairment is primarily due to Arkansas and adjacent 
states Oklahoma, Missouri, and Kansas).  
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5.4.3.3 Breton Island (BRET) Missouri 
 
Visibility impairment for the worst 20 percent days at Breton Island is primarily (69%) due to 
elevated point sources that contribute 77.7 Mm-1 out of a total of 122.2 Mm-1 (Figure E-3a).  
Although the contribution of elevated point sources is reduced substantially by 2018, they still 
contribute over half of the total extinction (101.1 Mm-1) on the worst 20 percent days at BRET 
(Figure E-3b).  The top five contributing source groups to 2018 visibility impairment at BRET 
for the worst 20 percent days are: Louisiana Elevated Point Sources; Boundary Conditions; East 
Elevated Point Sources; Gulf of Mexico Area Sources and Louisiana Area Sources.  Gulf of 
Mexico Area sources includes off shore shipping and oil and gas development emissions; note 
that for the PSAT simulation the off-shore marine shipping emissions were double counted 
which was corrected in the Base G emission scenarios used in the 2018 visibility projections 
discussed in Chapter 4. 
 
 
5.4.3.4  Boundary Waters (BOWA) Minnesota 
 
As seen for the other Class I areas, elevated point sources contribute the largest amount (47%) to 
visibility impairment at BOWA for the worst 20 percent days in 2002 (Figure E-4a).  However, 
unlike many of the other Class I areas, there is little reductions (~10%) in the elevated point 
source contributions going from 2002 (29.0 Mm-1) to 2018 (26.2 Mm-1) (Figures E-4a and E-4b).  
This is because there is a slight increase in the contributions of elevated point sources in 
Minnesota from 2002 to 2018 (Figures E-4c and E-4d) that is the highest contributing source 
group (Figure E-4e).   Note that the 2018 emission scenario includes growth and CAIR controls 
but no BART controls.  For the best 20 percent days, the largest contributing source group by far 
is Boundary Conditions (i.e., global transport) followed by Minnesota and Canada (Figures  
E-4g-j). 
 
 
5.4.3.5 Voyageurs (VOYA) Minnesota 
 
Results for VOYA are similar to BOWA with Minnesota, Canada and Boundary Conditions 
contributing the most to visibility impairment on the worst and best 20 percent days (Figure E-5). 
 
 
5.4.3.6 Hercules Glade (HEGL) Missouri 
 
Elevated point sources contribute over half to the total extinction for the worst 20 percent days at 
HEGL in 2002 (Figures E-6a and E-6b).  Going from 2002 to 2018 the contributions due to 
elevated point sources, on-road mobile and non-road mobile are reduced substantially, but the 
contributions due to the other sources remain unchanged.  The largest source group contributing 
to visibility impairment on the worst 20 percents days is area sources from Missouri in both 2002 
and 2018 (Figures E-6c and E-6d).  Since area emissions are not reduced much between 2002 
and 2018 and Missouri elevated point sources are mostly unchanged because the IPM model 
assumed Missouri CAIR sources would buy credits, then the Missouri contributions is only 
reduced a little going from 2002 to 2018 (from ~18 Mm-1 to ~16 Mm-1).  However, the 
contributions due to the Eastern U.S., Illinois and Indiana are reduced substantially.  Missouri is 
by far the largest contribution to visibility impairment at UPBU on the best 20 percent days as 
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well  with area sources from Missouri being the largest source category (Figures E-6h through E-
6j). 
 
 
5.4.3.7 Mingo (MING) Missouri 
 
The substantial improvements in visibility impairment at MING for the worst 20 percent days 
from 2002 (141 Mm-1) to 2018 (96 Mm-1) is primarily due to reductions in SO4 from non-
Missouri elevated point sources (Figures E-7a through E-7d).  Even so, with the exception of the 
top contributing Missouri area sources the largest contributing source groups to 2018 visibility 
impairment for the worst 20 percent days are still elevated point sources from several CAIR 
states (Illinois, Indiana, Missouri, East; Figure E-7e).  Missouri is the largest contributor to 
visibility on the best 20 percent days followed by Boundary Conditions and Illinois (Figure  
E-7i-j). 
 
 
5.4.3.8 Wichita Mountains (WIMO) Oklahoma 
 
Elevated point sources are the largest contributors to visibility impairment on the worst 20 
percent days at WIMO in both 2002 and 2018 (Figures E-8a and E-8b).  East Texas followed 
closely by Oklahoma are the largest contributing source regions in 2002, but by 2018 the reverse 
is true (Figures E-8c and E-8d).  By 2018 the largest contributing source group to visibility 
impairment on the worst 20 percent days at WIMO is global transport (i.e., boundary conditions) 
followed by Oklahoma Area Sources and East Texas Elevated Point sources (Figure E-8e).  
Oklahoma Area Sources is the largest contributor to visibility impairment on the best 20 percent 
days at WIMO (Figures E-8g-j). 
 
 
5.4.3.9 Big Bend (BIBE) Texas 
 
Elevated point sources (~17 Mm-1) followed by Boundary Conditions (~12 Mm-1) are the largest 
contributions to total extinction (46 Mm-1) on the worst 20 percent days at BIBE in 2002 (Figure 
E-9a).  In 2018 there is very little (~2 Mm-1) reduction in the contributions of elevated point 
sources and no reductions in global transport resulting in little reductions (~7%) in visibility 
impairment on the worst 20 percent days from 2002 (46 Mm-1) to 2018 (43 Mm-1).  This is due to 
the extremely large contributions of emissions from Mexico in both 2002 (Figure E-9c) and 2018 
(Figure E-9d).  In fact, the four highest contributing source groups to visibility impairment at 
BIBE for the worst 20 percent days are assumed to be unchanged from 2002 to 2018: Boundary 
Conditions, Mexico Elevated Points, West Texas Natural and Mexico Natural (Figure E-9e).  For 
the best 20 percent days at BIBE, West Texas, Mexico and Boundary Conditions are the highest 
three contributors to visibility impairment (Figures E-9g-j). 
 
 
5.4.3.10 Guadalupe Mountains (GUMO) Texas 
 
The large contribution of CM to visibility impairment at GUMO is clearly evident in the source 
apportionment modeling results (Figures E-10a-b).  These sources are about evenly divided in 
the modeling between natural sources and area sources.  Since these source categories are not 
reduced in the future year then there is little reduction in extinction from 2002 to 2018 (50 to 45 
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Mm-1) and what reductions there are come from Elevated Point Sources.  Sources in West Texas, 
Mexico, Boundary Conditions and New Mexico are the largest contributing source regions for 
both the worst 20 percent days (Figure E-10c-e) and best 20 percent days (Figures E-10g-j).   
 
 
5.5 Alternative Visibility Projection Procedures 
 
In this section we analyze several alternative visibility projection procedures from the EPA’s 
default approach (EPA, 2007a) used in Chapter 4.   
 
 
5.5.1 Treatment of Coarse Mass and Soil 
 
As noted previously, much of the coarse mass (CM) and, to a lesser extent, Soil measured at the 
IMPROVE monitor is likely due to local wind blown dust that is natural in origin and not 
captured by the model.  Consequently, even using the modeling results in a relative sense with 
the RRFs may not be appropriate for projecting CM and Soil.  If CM and Soil are in fact local 
impacts due to wind blown dust from natural lands, then it would be appropriate to assume they 
are natural and remain unchanged from the 2000-2004 Baseline to 2018.  This is probably 
certainly appropriate for CM because CM is primarily due to fugitive dust and it has a very short 
transport distance that is subgrid-scale to the model.  In fact the model evaluation discussed in 
Chapter 3 and Appendix C clearly shows a large underprediction bias for CM that is likely due to 
local fugitive dust impacts at the IMPROVE monitor.  For Soil this is less clear as fine particles 
can be transported over longer distances and is produced by anthropogenic sources, such as 
combustion and road dust, as well as natural sources.  We initially performed two CM and Soil 
sensitivity tests, the first assumed CM was all natural so remains unchanged from the 2000-2004 
Baseline to 2018 (i.e., set the RRF for CM equal to 1.0).  The second sensitivity test assumed 
both CM and Soil were natural so set RRFs for both of them to 1.0.  A comment from an FLM 
noted that we know some of the Soil is likely anthropogenic in origin.  So it was suggested to 
subtract the 2002 base case modeled Soil from the observed values for the 2002 worst 20 percent 
days and assume that the remainder (if any) was natural so hold the rest of the Soil constant in 
2018 and add to the 2018 modeled Soil values. 
 
The results of the CM and Soil visibility projection sensitivity analysis are shown in the DotPlot 
in Figure 5-12.  The CM and Soil visibility projection sensitivity analysis has little effect on the 
2018 visibility projections at the CENRAP Class I areas.  Even GUMO, which has a large CM 
and Soil component, shows very little sensitivity.  This is probably because the CM at GUMO is 
likely dominated by wind blown dust that was assumed constant from 2002 to 2018 so the RRF 
calculated using the default EPA method is near 1.0 anyway.  Some larger sensitivity is seen at 
several WRAP Class I areas.  It is encouraging that CENRAP 2018 visibility projections are not 
sensitive to the CM and Soil components of the modeling which are highly uncertain. 
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CMAQ BaseG Method 1 predictions for CENRAP+ sites
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Figure 5-12.  Sensitivity of 2018 visibility projections to various methods that assume all 
CM, all CM and Soil and all CM and part of the Soil is natural. 
 
 
5.6 Alternative Model 
 
The CAMx model was also run for a 2002 and 2018 base case scenarios with earlier versions of 
the CENRAP emissions (Base E modified to eliminate double counting of some area fire 
emissions) than the final CMAQ 2002 Base G modeling.  The CAMx 2002 and 2018 output was 
processed the same way that the CMAQ results were to generate 2018 visibility projections at 
the CENRAP and nearby Class I areas that were compared with the 2018 URP point.  Figure 5-
13 summarizes the CAMx 2018 visibility projections using the new IMPROVE algorithm (NIA) 
in a DotPlot and compares them with the CMAQ 2018 Base G results (from Figure 5-12).   The 
CMAQ and CAMx 2018 visibility projections are remarkably similar.  The four Arkansas and 
Missouri Class I areas are projected to achieve the 2018 URP point by almost the exact same 
amount by the two models.  The two Texas Class I areas are projected to come up short of 
achieving the 2018 URP point by the same amount by the two models.  The largest differences 
are seen at BRET, and to a lesser extent BOWA and VOYA.  At BRET the CAMx 2018 
visibility projections are much less optimistic (< 80%) in achieving the 2018 URP point than 
CMAQ (> 90%).  And CMAQ is slightly less optimistic than CAMx in achieving the 2018 URP 
point for the two northern Minnesota Class I areas.  The reasons for these differences are unclear 
but could be partially due to the emissions updates in the final CMAQ Base G run that included 
eliminating the double counting of off-shore marine emissions in the Gulf of Mexico that was 
present in the CAMx simulation, which makes it more difficult to get visibility improvements at 
BRET since it is influenced by sources in the Gulf.  Corrections to stack parameters for Canadian 
point sources were also made for the final Base G.  The general close agreement of the CAMx 
2018 visibility projections to the final CMAQ values is encouraging and good QA check. 
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CMAQ BaseG vs CAMx BaseE Method 1 predictions for CENRAP+ sites On Worst 20% Days
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Figure 5-13.  Comparison of CAMx 2018 visibility projections with 2018 URP points for 
CENRAP and nearby Class I areas. 
 
 
5.7  Effects of International Transport on 2018 Visibility Projections 
 
As seen in the PM source apportionment modeling discussed in Section 5.4, there is significant 
contributions of international sources to visibility impairment at many CENRAP Class I areas for 
the worst 20 percent days.  With the exception of Canada, where we used a year 2000 inventory 
for the 2002 base case modeling and a 2020 inventory for the 2018 inventory, international 
sources were assumed to be constant between 2002 and 2018.  Thus, Class I areas that are 
heavily impacted by contributions of international transport will have a difficult time achieving 
the 2018 URP point since international sources are assumed to remain constant.  The CAMx 
PSAT runs discussed previously provide a framework for quantitatively assessing the 
contributions of international transport to the visibility projections and whether reasonable 
progress toward natural conditions is being achieved in the 2018 modeling. 
 
There are several source regions (Figure 5-8) and source categories in the PSAT modeling that 
include international sources: 

• Mexico Anthropogenic Sources (assumed all international); 
• Canada Anthropogenic Sources (assumed all international); 
• Gulf of Mexico (assumed all U.S. sources); 
• Pacific and Atlanta Ocean (assumed all U.S. sources); and 
• Boundary Conditions (assumed half international and half natural sources). 
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Although it can be argued that Mexico and Canada are not truly international due to the presence 
of numerous U.S. corporations in Mexico along with free trade among the two countries, states 
and federal government have no jurisdiction to regulate industry in these two countries so they 
are considered international in these calculations.  The Gulf of Mexico includes off-shore oil and 
gas production facilities, support vessels and aircraft and off-shore marine shipping.  Given that 
emissions from the oil and gas production can be regulated by the U.S., then the Gulf of Mexico 
is not considered an international source.  Emissions from off-shore shipping in the Pacific and 
Atlantic Oceans are also currently not regulated by the U.S. government.  However, there are 
current efforts to apply some regulations to these emissions so for these calculations they were 
not assumed to be international sources.  Finally, the Boundary Conditions (BCs) for the 
CENRAP modeling were generated from a 2002 simulation of the GEOS-CHEM global 
chemistry model and held constant in 2018.  These BCs would include contributions from 
international sources as well as natural sources, so need to be split.  For the sensitivity 
calculations discussed below we assumed that the BCs were half due to natural and half due to 
international sources.  This results in international sources being defined as follows: 
 
 International Contribution = Mexico Anthro + Canada Anthro + ½ BCs 
 
Two methods were examined to see what the effects of international sources on 2018 visibility 
projections and a Class I areas ability to achieve the 2018 URP point: 
 

Elimination of International Contributions to 2018 Visibility Projections: In this method 
the contribution of international emissions is taken out of the 2018 visibility projections 
and examined to see whether the new visibility projection achieves the URP point.  If so, 
then international sources are hindering a Class I area in achieving the 2018 URP point, 
which suggests that the 2018 URP point is not a reasonable value for an RPG. 
 
Visibility Projections and Glidepaths Based on Controllable Visibility Impairment:  The 
second method would look at the visibility projections for just the U.S. controllable 
portion of the visibility impairment.  The glidepath end point in 2064 would be to 
eliminate the U.S. man-made contributions to visibility impairment on the worst 20 
percent days. 

 
Note that this analysis is performed solely for providing states and others additional information 
on which Class I areas the modeling suggest are unduly influenced by International Transport. 
 
 
5.7.1  Elimination of International Contributions to 2018 Visibility Projections  
 
This method was also discussed in a recent technical brief prepared by the Electric Power 
Research Institute (EPRI), only in EPRI’s analysis they used results from a global chemistry 
model and VISTAS CMAQ runs with no global anthropogenic emissions (EPRI, 2007).  Thus, 
before discussing our results of this analysis using PSAT, we discuss EPRI’s analysis.  
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5.7.1.1  EPRI’s Analysis of Effects of International Contributions 
 
EPRI funded Harvard University to perform annual simulations of the GEOS-Chem global 
chemistry model (http://www-as.harvard.edu/chemistry/trop/geos/) for annual simulations with 
and without non-U.S. anthropogenic emissions to determine the contributions of international 
transport to PM and visibility.  The EPRI Harvard GEOS-Chem simulations were performed for 
2001.  Figure 5-14 and 5-15 compare the annual average ammonium sulfate, ammonium nitrate 
organic mass carbon (OMC, also called OCM) and elemental carbon (EC) due to the GEOS-
Chem global modeling and the CAMx PSAT source apportionment modeling.  The similarity of 
the results for ammonium sulfate is remarkable (Figure 5-14).  Both methods estimate that the 
annual average ammonium sulfate contribution due to international sources ranges from 0.4 to 
1.0 μg/m3 across the Class I areas.  There is less agreement between the two methods for 
ammonium nitrate due in part to a CAMx overestimation issue that is likely due in part to how 
ammonia emissions were classified as being anthropogenic or not in the no U.S. anthropogenic 
emissions simulations (Figure 5-15).  Better agreement is seen between the two methods 
international contributions of OMC and EC, although CAMx estimates higher contributions than 
GEOS-Chem. 
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Figure 5-14.  Comparison of EPRI Harvard GEOS-Chem global chemistry (top) and 
CENRAP PSAT (bottom) international source contributions to ammonium sulfate at 
Class I areas. 
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Figure 5-15.  Comparison of EPRI Harvard GEOS-Chem global chemistry (top) and 
CENRAP PSAT (bottom) international source contributions to ammonium nitrate, organic 
carbon mass (OCM or OMC) and elemental carbon (EC) at Class I areas. 
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The EPRI technical brief used the VISTAS CMAQ runs to adjust the modeled 2018 visibility 
projections to eliminate the effect of international transport and compared them to the 2018 URP 
point.  For the Boundary Waters, Voyageurs, Isle Royal and Seney Class I areas the standard 
2018 visibility projections did not achieve the 2018 URP point.  However, when the effect of 
transboundary pollutions was removed the 2018 URP point was essentially achieved or more 
than achieved at all four Class I areas. 
 
 
5.7.1.2  CENRAP Results From Elimination International Transport 
 
Because the elimination of the international sources from the 2018 visibility projections results 
in a portion of the total light extinction, then these comparisons with the 2018 URP points were 
done using extinction glidepaths and projections rather than deciview.  In Section 5.2.1 we 
demonstrated that the level of achieving the 2018 URP point was almost identical at CENRAP 
Class I areas whether the linear deciview or curved extinction glidepaths were used.  The PSAT 
source apportionment was used to determine the contribution to the projected extinction in 2018 
due to international sources.  As noted above, international sources were assumed to be due to 
anthropogenic emissions in Mexico and Canada and half of the Boundary Conditions. 
 
Figure 5-16 shows the standard CAMx extinction glidepaths and 2018 visibility projections and 
the 2018 visibility projections when the contributions of international sources is eliminated.  
CACR, which achieved the 2018 URP point by 104%, achieves it by even more when 
international sources are eliminated (117%).  UPBU that barely achieved the 2018 URP point by 
102% achieves it by 116% without international emissions. 
 
BRET comes up short of achieving the 2018 URP point when international emission are included 
(76%) as well as when they are eliminated (92%), although it is much closer (recall contributions 
of Gulf of Mexico to visibility impairment at BRET that is assumed in this analysis to be of U.S. 
origin).  Eliminating international transport emissions makes of difference of meeting the 2018 
URP point without them (120%) to not meeting it with them (64%) at BOWA.  Similarly at 
VOYA the standard 2018 visibility projections do not achieve the 2018 URP point (54%), 
whereas it is achieved by a far margin when international sources are eliminated (132%). 
 
HEGL comes up short achieving the 2018 URP point when international sources are included 
(95%), but achieves it when they are eliminated (107%).  Recall the standard CAMx deciview 
visibility projections barely achieved the URP point even when international emissions are 
included (Figure 5-13).   MING achieves the 2018 URP point with (106%) and without (116%) 
international sources.  WIMO does not achieve the 2018 URP point when international 
contributions are eliminated. 
 
International sources have by far the largest effect at BIBE.  Whereas the standard 2018 visibility 
projections only achieved 27% of the reductions needed to achieve the 2018 URP point, 
elimination of the international source contributions achieves 172% of the reduction needed.  
GUMO comes up short in achieving the 2018 URP point when international sources are included 
(31%), but achieves it when they are not (107%). 
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Figure 5-16.  Elimination of international sources from 2018 visibility projections and 
comparison with 2018 URP point at CENRAP Class I areas. 
 
 
5.7.2 Glidepaths Based on Controllable Extinction 
 
Another alternative glidepath that was examined using the CAMx PSAT source apportionment 
results was based on the U.S. anthropogenic emissions contributions to visibility impairment on 
the worst 20 percent days at the CENRAP Class I areas.   The RHR strives to achieve “natural 
visibility conditions” by 2064 and defines natural conditions as conditions that would exist “in 
the absence of human caused impairment”.   As shown above, anthropogenic emissions from 
international sources contribute significantly to visibility impairment at many of the CENRAP 
Class I areas making the RHR objective not practical if contributions from such sources are not 
reduced.  Given that states and EPA have no jurisdiction over international sources, then we can 
not assume they will be controlled and have therefore held most of them constant at 2002 levels.  
For such Class I areas with high contributions from international sources, the comparison with 
the 2018 URP point is not very meaningful since the 2018 URP assumes such sources will be 
reduced.  A more meaningful comparison would be to focus on the U.S. man-made contributions 
to visibility impairment at the Class I areas and develop a URP glidepath and 2018 URP point 
that is aimed at eliminating the U.S. anthropogenic emissions contributions to visibility 
impairment at Class I areas for the worst 20 percent days in 2064. 
 
The CAMx 2002 base case PSAT PM source apportionment results were processed to identify 
the portion of the 2000-2004 Baseline extinction that was due to U.S. anthropogenic emissions 
(i.e., man-made sources).  The contributions of source groups that included on-road mobile, non-
road mobile, elevated point sources, low-level point sources and area sources from the PSAT 
source regions covering the U.S. states and Gulf of Mexico (Figure 5-8) were assumed to make 
up the U.S. anthropogenic contributions (i.e., excluding the Natural source category, all sources 
from the Mexico and Canada source regions and boundary conditions).  Note that off-shore 
marine emissions in the Pacific and Atlantic Oceans and Gulf of Mexico were included in the 
U.S. anthropogenic emissions definition because they were in source regions associated with 
states or the Gulf of Mexico.  As off-shore marine emissions may not be controllable by U.S. 
agencies and they were assumed to remain unchanged going from 2002 to 2018, then the 2018 
visibility projections for the U.S. anthropogenic component are overstated. 
 
The 2064 objective for the U.S. anthropogenic emissions glidepath would be no contributions on 
the worst 20 percent days.  This does not mean the 2064 U.S. anthropogenic extinction objective 
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is zero, rather the U.S. anthropogenic plus natural background is less than the Natural Conditions 
for the worst 20 percent days.  The PSAT results were used to define the natural background 
contributions on the current worst 20 percent days which was subtracted from the EPA default 
Natural Conditions to obtain the 2064 objective for the U.S. anthropogenic emissions 
contributions.  Here the PSAT derived natural background was defined as the sum of the 
contributions from the Natural source category, secondary organic aerosol from biogenic sources 
(SOAB) and half of the boundary conditions.  For example, Figure 5-17 top left displays the US 
anthropogenic emissions glidepath for CACR.  The PSAT natural sources contribution (=Natural 
Source Category + SOAB + ½ BC) is approximately 13 Mm-1 so that is subtracted from the 2064 
Natural Background (~32 Mm-1, see figure 5-16) to obtain a 2064 end point of ~19 Mm-1 for the 
glidepath.  The 2002 PSAT results applied to the 2000-2004 Baseline extinction estimates that 
111 Mm-1 of the extinction is due to U.S. anthropogenic emissions which form the starting point 
for the glidepath.  The curvature in the US anthropogenic glidepath is introduced the same way 
as for the extinction based glidepath to account for the logarithmic relationship between 
extinction and deciview. 
 
Figure 5-17 displays the U.S. anthropogenic emissions extinction glidepaths and comparison 
with the 2018 visibility projections for extinction due to U.S. anthropogenic emissions on the 
worst 20 percent days.  As seen by the standard linear deciview glidepaths discussed in Chapter 
4, the U.S. anthropogenic emissions 2018 URP point is achieved by a wide margin at the four 
Class I areas in Arkansas and Missouri (CACR, UPBU, HRGL and MING).  BRET that 
achieved 94% of the 2018 URP point obtains similar results using the U.S. anthropogenic 
emissions glidepath achieving 96% of the 2018 URP point.  As discussed above, the inclusion of 
the off-shore marine emissions in the U.S. anthropogenic emissions will greatly affect the BRET 
Class I area so that actual reduction in U.S. anthropogenic emissions extinction would be greater 
and may even achieve the 2018 URP point if off-shore marine vessels were classified as not 
being part of the U.S.. 
 
The BOWA and VOYA northern Minnesota Class I areas achieved, respectively, 69% and 53% 
of the 2018 URP point using the standard EPA default deciview glidepaths and projection 
techniques (Figure 4-4).  Using the U.S. anthropogenic glidepaths BOWA and VOYA achieve 
92% and 86% of the 2018 point, respectively (Figure 5-17).  WIMO that came up approximately 
40% short of achieving the 2018 URP point using the deciview glidepath comes up under 20% 
short using the U.S. anthropogenic emissions glidepath. 
 
The two Texas Class I areas also come up short in achieving the 2018 URP point using the U.S. 
anthropogenic emissions glidepaths, but not as short as when the linear deciview glidepaths are 
used.  BIBE increases from 26% to 67% and GUMO increases from 34% to 49%.  One reason 
these two Class I areas fail to achieve the 2018 point for U.S. anthropogenic emissions is because 
of the high contributions of Soil and CM and little change in precursor emissions of these species 
between 2002 and 2018.   
 



   
September 2007 
 
 
 

F:\CENRAP_Modeling\TSD\draft#3\Chapter_5_AddAnal3.doc 5-31 

Uniform Rate of Reasonable Progress Glide Path
Caney Creek Wilderness - Worst 20% Days

111.38

96.84

75.02

57.89

44.36

33.52
24.48

19.38

67.20

0

20

40

60

80

100

120

140

2000 2004 2008 2012 2016 2020 2024 2028 2032 2036 2040 2044 2048 2052 2056 2060 2064

Year

BE
XT

 (1
/M

m
)

Glide Path Natural Condition (Worst Days) Observation Method 2B Prediction    

Uniform Rate of Reasonable Progress Glide Path
Upper Buffalo Wilderness - Worst 20% Days

110.85

96.99

75.37

58.37

44.93

34.19
25.29

20.36

68.39

0

20

40

60

80

100

120

140

2000 2004 2008 2012 2016 2020 2024 2028 2032 2036 2040 2044 2048 2052 2056 2060 2064

Year

BE
XT

 (1
/M

m
)

Glide Path Natural Condition (Worst Days) Observation Method 2B Prediction    
Uniform Rate of Reasonable Progress Glide Path

Breton - Worst 20% Days

103.43

91.55

73.24

58.61

46.91

37.59
30.16

26.48

74.69

0

20

40

60

80

100

120

140

2000 2004 2008 2012 2016 2020 2024 2028 2032 2036 2040 2044 2048 2052 2056 2060 2064

Year

B
EX

T 
(1

/M
m

)

Glide Path Natural Condition (Worst Days) Observation Method 2B Prediction    

Uniform Rate of Reasonable Progress Glide Path
Boundary Waters - Worst 20% Days

44.12

40.11

35.80
32.09

28.93
26.30

24.22 23.25

36.50

0

10

20

30

40

50

60

2000 2004 2008 2012 2016 2020 2024 2028 2032 2036 2040 2044 2048 2052 2056 2060 2064

Year

BE
XT

 (1
/M

m
)

Glide Path Natural Condition (Worst Days) Observation Method 2B Prediction    
Uniform Rate of Reasonable Progress Glide Path

Voyageurs NP - Worst 20% Days

36.08
33.17

30.37
27.95

25.92
24.27 23.05 22.55

31.17

0

10

20

30

40

50

60

2000 2004 2008 2012 2016 2020 2024 2028 2032 2036 2040 2044 2048 2052 2056 2060 2064

Year

B
EX

T 
(1

/M
m

)

Glide Path Natural Condition (Worst Days) Observation Method 2B Prediction    

Uniform Rate of Reasonable Progress Glide Path
Hercules-Glades Wilderness - Worst 20% Days

121.44

104.95

80.70

61.90

47.26

35.76

26.46
21.42

77.22

0

20

40

60

80

100

120

140

2000 2004 2008 2012 2016 2020 2024 2028 2032 2036 2040 2044 2048 2052 2056 2060 2064

Year

BE
XT

 (1
/M

m
)

Glide Path Natural Condition (Worst Days) Observation Method 2B Prediction    
Uniform Rate of Reasonable Progress Glide Path

Mingo - Worst 20% Days

143.07

123.51

95.29

73.48

56.61

43.54
33.34

28.26

86.80

0

20

40

60

80

100

120

140

160

180

2000 2004 2008 2012 2016 2020 2024 2028 2032 2036 2040 2044 2048 2052 2056 2060 2064

Year

B
E

X
T 

(1
/M

m
)

Glide Path Natural Condition (Worst Days) Observation Method 2B Prediction    

Uniform Rate of Reasonable Progress Glide Path
Wichita Mountains - Worst 20% Days

77.98

67.77

50.99

38.13

28.21

20.41
13.88

9.96

55.49

0

10

20

30

40

50

60

70

80

90

100

2000 2004 2008 2012 2016 2020 2024 2028 2032 2036 2040 2044 2048 2052 2056 2060 2064

Year

BE
XT

 (1
/M

m
)

Glide Path Natural Condition (Worst Days) Observation Method 2B Prediction    



   
September 2007 
 
 
 

F:\CENRAP_Modeling\TSD\draft#3\Chapter_5_AddAnal3.doc 5-32 
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Figure 5-17.  Glidepaths and 2018 visibility projections based on visibility due to U.S. anthropogenic 
emissions at CENRAP Class I areas. 
 
 
5.8 Use of Original IMPROVE Equation 
 
2018 visibility projections were also made using the CENRAP Typ02g and Base18g CMAQ 
modeling results and the original (old) IMPROVE equation.  Figure 5-18 displays a DotPlot that 
compares the 2018 Base G visibility projections using the new IMPROVE algorithm (NIA) and 
the original IMPROVE algorithm (OIA).  In general the new IMPROVE equation results in more 
optimistic 2018 visibility projections than the original IMPROVE equation.  For the Texas and 
WRAP Class I areas, the 2018 visibility projections are nearly identical using the two IMPROVE 
equations.  For the four Class I areas in Arkansas and Missouri the 2018 visibility projections 
using the new IMPROVE equation are from 7 to 21 percentage points more optimistic than the 
original IMPROVE equation.  In the case of UPBU, HEGL and MING the 2018 visibility 
projections go from not achieving to achieving the 29018 URP point when switching from the 
old to new IMPROVE equation. 
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CMAQ BaseG Method 1 predictions for CENRAP+ sites on Worst 20% Days
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Figure 5-18.  Comparison of 2018 Base G visibility projections using the New (NIA) and Old 
(OIA) IMPROVE algorithms expressed as a percentage of achieving the 2018 URP point 
visibility improvements. 
 
 
5.9 Visibility Trends 
 
Figure 5-19 displays trends in visibility impairment at the CENRAP Class I areas using the 
period of record of measurements at the associated IMPROVE monitor and the new IMPROVE 
equation.  These trends include trends for the worst 20 percent days, the best 20 percent days and 
all IMPROVE sampled days during a year.  The EPA guidance procedures were used to 
construct the worst and best 20 percent days that includes a minimum data capture requirement 
(EPA, 2003a), whereas no such minimum data capture was applied when looking at the “annual 
average” of all IMPROVE sampled days trends.  So care must be taken when analyzing trends 
for the all sampled IMPROVE days trends as there could be large missing periods with high or 
low extinction that are not being account for.  The WRAP Technical Support System (TSS) 
website was used to calculate the visibility trends at the CENRAP Class I areas that includes 
IMPROVE data from start of recording through 2004 and includes no data filling (see: 
http://vista.cira.colostate.edu/TSS/Default.aspx) . 
 
Trends in visibility at CACR has three years of data (2002-2004) for the worst and best 20 
percent days and fives years for the IMPROVE sampled days trends.  Although it is hard to come 
to any conclusions regarding trends with just three years of data, there does seem to be a general 
downward trend, that is also supported by the five year trend in the IMPROVE sampled days. 
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A much longer trend plot is available for UPBU that includes 12 years of data for the worst and 
best 20 percent days (Figure 5-19b).  Although there is a lot of a year-to-year variation in the 
visibility trends with cleaner years occurring in 1997, 2001 and 2004, there does appear to be a 
slight trend toward improved visibility at UPBU. 
 
There is insufficient data to calculate the worst or best 20 percent days visibility for any year at 
the BRET Class I area so only the IMPROVE sampled days trends are presented (Figure 5-19c).  
The trends at BRET are inconclusive and given the large amounts of missing data at this site it is 
difficult to interpret the results. 
 
There is also a lot of missing years in the worst and best 20 percent days for the BOWA Class I 
area making it difficult to interpret (Figure 5-19d).  But visibility appears to be more impaired in 
the early 1990s than in more current years so improvements have been seen.  VOYA has five 
years of valid data and shows worsening visibility for 2000-2003, and then improved visibility in 
2004.  It is unclear whether the 2004 improved visibility is a trend or just due to variations in 
meteorology so no conclusions can be drawn. 
 
Although a downward trend in visibility impairment appears to be occurring at the two Missouri 
Class I areas (Figure 5-19f-g), given that there are only three years available for HEGL and lots 
of missing data for MING these trends are inconclusive. 
 
Three years (2002-2004) of visibility trends for the worst and best 20 percent days are available 
for WIMO (Figure 5-19h).  The most impaired year from the three years for the worst 20 percent 
days is the most recent (2004).  Again, the time period is too short to draw any conclusions on 
trends in visibility at WIMO. 
 
The two Texas Class I areas have a relatively long period of record.  There is a lot of year-to-
year variability in the visibility measurements that make interpreting the trends difficult.  1998 
appears to be an anomalously high visibility impairment year at BIBE and due to the much 
higher OMC extinction indicates that the year was likely impacted by smoke from fires.  GUMO 
has lots of year to year variability in CM and Soil which are likely due to occurrences of impacts 
due to wind blown dust.  Even taking Soil and CM out of the interpretation it is difficult to 
interpret ay trend in visibility at the two Texas Class I areas.  The higher visibility impairment in 
1998 and 1999 suggests a downward trend but that may be just due to more adverse 
meteorological and natural emissions (e.g., wildfires) in these two years than any real long term 
trend. 
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Figure 5-19a.  Time series of observed IMPROVE reconstructed light extinction (New IMPROVE) 
at Caney Creek (CACR), Arkansas for the average of the Worst 20 Percent days (top), Best 20 
Percent days (middle) days and all IMPROVE sampling days during the period of record. 
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Figure 5-19b.  Time series of observed IMPROVE reconstructed light extinction (New 
IMPROVE) at Upper Buffalo (UPBU), Arkansas for the average of the Worst 20 Percent days 
(top), Best 20 Percent days (middle) days and all IMPROVE sampling days during the period 
of record. 
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Insufficient Data to Calculate Best 20 Percent days at BRET 

Figure 5-19c.  Time series of observed IMPROVE reconstructed light extinction (New IMPROVE) 
at Breton Island (BRET), Louisiana for the average of the Worst 20 Percent days (top), Best 20 
Percent days (middle) days and all IMPROVE sampling days during the period of record. 
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Figure 5-19d.  Time series of observed IMPROVE reconstructed light extinction (New IMPROVE) at 
Boundary Waters (BOWA), Minnesota for the average of the Worst 20 Percent days (top), Best 20 
Percent days (middle) days and all IMPROVE sampling days during the period of record. 
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Figure 5-19e.  Time series of observed IMPROVE reconstructed light extinction (New IMPROVE) 
at Voyageurs (VOYA), Minnesota for the average of the Worst 20 Percent days (top), Best 20 
Percent days (middle) days and all IMPROVE sampling days during the period of record. 
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Figure 5-19f.  Time series of observed IMPROVE reconstructed light extinction (New 
IMPROVE) at Hercules Glade (HEGL), Missouri for the average of the Worst 20 Percent days 
(top), Best 20 Percent days (middle) days and all IMPROVE sampling days during the period of 
record. 
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Figure 5-19g.  Time series of observed IMPROVE reconstructed light extinction (New 
IMPROVE) at  Mingo (MING), Missouri for the average of the Worst 20 Percent days (top), 
Best 20 Percent days (middle) days and all IMPROVE sampling days during the period of 
record. 
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Figure 5-19h.  Time series of observed IMPROVE reconstructed light extinction (New 
IMPROVE) at  Wichita Mountains (WIMO), Oklahoma for the average of the Worst 20 Percent 
days (top), Best 20 Percent days (middle) days and all IMPROVE sampling days during the 
period of record. 
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Figure 5-19i.  Time series of observed IMPROVE reconstructed light extinction (New 
IMPROVE) at  Big Bend (BIBE), Texas for the average of the Worst 20 Percent days (top), 
Best 20 Percent days (middle) days and all IMPROVE sampling days during the period of 
record. 
 



   
September 2007 
 
 
 

F:\CENRAP_Modeling\TSD\draft#3\Chapter_5_AddAnal3.doc 5-44 

 

Figure 5-19j.  Time series of observed IMPROVE reconstructed light extinction (New 
IMPROVE) at  Guadalupe Mountains (GUMO), Texas for the average of the Worst 20 Percent 
days (top), Best 20 Percent days (middle) days and all IMPROVE sampling days during the 
period of record. 
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