Third Fork Platte River
Buchanan County, Missouri
Total Maximum Daily Load

September, 2006

Approved by:

/s/ William A. Spratlin
Director
Water, Wetlands, and Pesticides Division

11/15/2006 Date
Total Maximum Daily Load (TMDL)

Third Fork Platte River

Pollutant: Sediment

Name: Third Fork Platte River

Downstream Location: Buchanan County, Missouri

Upstream Location: Gentry County, Missouri

Hydrologic Unit Code (HUC): 10240012

Water Body Identification (WBID): 327

Missouri Stream Class: The impaired segment of Third Fork Platte River is a Class C Stream\(^1\).

Beneficial Uses\(^2\):
- Livestock and Wildlife Watering
- Protection of Warm Water Aquatic Life
- Human Health Protection (Fish Consumption)
- Whole Body Contact Recreation (Category B)

Size of Impaired Segment: 31.5 miles

Location of Impaired Segment\(^3\): From the Mouth (34, 57N, 34W) to 25, 61N, 33W (refer to Table H 10 CSR 20-7)

Pollutant: Sediment

Pollutant Source: Agricultural Non-point Source

TMDL Priority Ranking: Low

1 Introduction

This Third Fork Platte River Total Maximum Daily Load (TMDL) for sediment is being established in accordance with Section 303(d) of the Clean Water Act, because the State of Missouri determined on the 1998 and 2002 303(d) lists of impaired waters that the water quality standards (WQS) for Third Fork Platte River were exceeded due to sediment. To meet the milestones of the 2001 Consent Decree, *American Canoe*

\(^1\) Class C streams may cease flow in dry periods but maintain permanent pools, which support aquatic life. See 10 CSR 20-7.031(1)(F)

\(^2\) For Beneficial Uses see 10 CSR 20-7.031(1)(C) and Table H.

\(^3\) See Table H 10 CSR 20-7.
The purpose of a TMDL is to determine the pollutant loading a waterbody can assimilate without exceeding the WQS for that pollutant. The TMDL also establishes the pollutant load allocation necessary to meet the WQS established for each waterbody based on the relationship between pollutant sources and in-stream water quality conditions. The TMDL consists of a wasteload allocation (WLA), a load allocation (LA), and margin of safety (MOS). The WLA is the fraction of the total pollutant load apportioned to point sources. The LA is the fraction of the total pollutant load apportioned to non-point sources. The MOS is a percentage of the TMDL that accounts for the uncertainty associated with the model assumption and data inadequacies.

2 Background and Water Quality Problems

Third Fork Platte River is located in the Platte River Basin. The upstream and downstream counties include Gentry and Buchanan, respectively. The primary cause of the sediment impairment to Third Fork Platte River has been identified as pollution caused by agricultural non-point sources.

All waters of the State, as per Missouri WQS, must provide suitable conditions for aquatic life. The conditions include both the physical habitat and the quality of the water. TMDLs are not written to address habitat, but are written to correct water quality conditions. Because the water body addressed by this TMDL was assessed as to its biological function, many factors may have contributed to the impairment. The State of Missouri continues to do field evaluation and in the future, may define the role sediment is playing in the potential biological impairment of this waterbody. However, the water quality condition for which Third Fork Platte River is currently listed is sedimentation; therefore, this TMDL addresses sediment. The State of Missouri may submit and EPA may approve another TMDL or a modified 303(d) listing for this water at a later time to address new information on the impairment.

A combination of natural geology and land use (Table 1 and Figure 1) in the prairie portions of the state (where Third Fork Platte River is located) is believed to have reduced the amount and impaired the quality of habitat for aquatic life. The major problems are excessive rates of sediment deposition due to stream bank erosion and sheet erosion from agricultural lands, loss of stream length and loss of stream channel heterogeneity due to channelization, and changes in basin hydrology that have increased flood flows and prolonged low flow conditions. Loss of tree cover in riparian zones has caused elevated water temperatures in summer and a reduction in woody debris, a critical aquatic habitat component in prairie streams. The most compelling evidence of loss or impairment of aquatic habitat is the change in the historic distribution of fishes in
Missouri. Many species of fish no longer appear in portions of the state where they once lived.4

Third Fork Platte River was placed on the Missouri 303(d) list for sedimentation. This was primarily based on best professional judgment because little sediment data exists to directly document sediment impacts to the stream. General fisheries data and the effect of sediment on fish were the initial data used to consider Third Fork Platte River for 303(d) listing. For this TMDL, sediment targets were derived using generalized information from the ecological drainage unit (EDU).

Since the 303(d) listing, Missouri Department of Natural Resources (MDNR) has developed a sediment protocol to determine if sediment is actually the pollutant in the streams listed and to arrive at a standard way to measure sediment. The first step of that protocol is a biological assessment to see if the biological community is actually impaired. A biological assessment was not available for this waterbody.

Table 1: Land Use Distribution for Third Fork Platte River

<table>
<thead>
<tr>
<th>Type</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cropland</td>
<td>40.3%</td>
</tr>
<tr>
<td>Deciduous Forest</td>
<td>6.5%</td>
</tr>
<tr>
<td>Deciduous Woody/Herbaceous</td>
<td>3.3%</td>
</tr>
<tr>
<td>Evergreen Forest</td>
<td><0.1%</td>
</tr>
<tr>
<td>Grassland</td>
<td>44.6%</td>
</tr>
<tr>
<td>Herbaceous-Dominated Wetland</td>
<td>0.4%</td>
</tr>
<tr>
<td>High Density Urban</td>
<td><0.1%</td>
</tr>
<tr>
<td>Impervious</td>
<td>2.1%</td>
</tr>
<tr>
<td>Low Intensity Urban</td>
<td>0.2%</td>
</tr>
<tr>
<td>Open Water</td>
<td>0.7%</td>
</tr>
<tr>
<td>Woody-Dominated Wetland</td>
<td>1.9%</td>
</tr>
</tbody>
</table>

Watershed Area = 222 mi²

3 Description of Sources

3.1 Point Sources

Four National Pollutant Discharge Elimination System (NPDES) permitted facilities are located within the watershed (Table 2). Three are municipal waste water treatment facilities (WWTFs) in DeKalb County and the fourth is a general permit in Gentry County.

Livestock in the watershed include many horses, cattle, and hogs held in pastures, feedlots, and Concentrated Animal Feeding Operations (CAFO). There is no registered, certified or permitted CAFO within the watershed. CAFOs are animal feeding operations in which animals are confined to areas that are totally roofed. CAFOs typically utilize earthen or concrete structures to contain and store manure prior to land application.

Table 2: Permitted Facilities

<table>
<thead>
<tr>
<th>Facility – Other</th>
<th>Permit number</th>
<th>County</th>
<th>Design Flow (MGD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>King City WW Lagoon</td>
<td>MO-0049662</td>
<td>DeKalb</td>
<td>0.0986</td>
</tr>
<tr>
<td>Union Star Sewage Wastewater</td>
<td>MO-0096202</td>
<td>DeKalb</td>
<td>0.07</td>
</tr>
<tr>
<td>Clarksdale WWTF</td>
<td>MO-0117161</td>
<td>DeKalb</td>
<td>0.039</td>
</tr>
<tr>
<td>MFA Bulk Plant – King City</td>
<td>MO-G350099</td>
<td>Gentry</td>
<td>Storm water discharge</td>
</tr>
</tbody>
</table>

3.2 Non-Point Sources

Most of the watershed is grassland (45%), cropland (40%), or deciduous forest (6%). There is no NPDES-permitted CAFO in the watershed (Table 2). However, there are other livestock in the watershed (Table 3). Agricultural land adjacent to and draining into Third Fork Platte River could contribute to the sediment impairment. Overland runoff can easily carry sediment into the stream. Soil from exposed land runs into the creek, increasing the turbidity and concentration of total suspended solids (TSS) and decreasing the transparency. Background levels of TSS come from natural fluvial processes. Sediment becomes suspended during high flow events as soil along the banks is eroded and bed sediment is resuspended. Sediment loading in the Third Fork Platte River watershed comes predominantly from nonpoint source pollution.

Table 3: Livestock Estimates (AU) per County in Watershed

<table>
<thead>
<tr>
<th>Cattle</th>
<th>Gentry</th>
<th>Andrew</th>
<th>DeKalb</th>
<th>Buchanan</th>
<th>Clinton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef</td>
<td>17,122</td>
<td>9,813</td>
<td>15,155</td>
<td>9,217</td>
<td>14,584</td>
</tr>
<tr>
<td>Milk</td>
<td>355</td>
<td>1,322</td>
<td>987</td>
<td>613</td>
<td>510</td>
</tr>
<tr>
<td>Cow/Calf</td>
<td>38,221</td>
<td>21,420</td>
<td>33,876</td>
<td>18,811</td>
<td>35,207</td>
</tr>
<tr>
<td>Hogs/Pigs</td>
<td>(D)</td>
<td>2,987</td>
<td>4,753</td>
<td>3,546</td>
<td>1,357</td>
</tr>
<tr>
<td>Sheep/Lambs</td>
<td>343</td>
<td>1,314</td>
<td>718</td>
<td>(D)</td>
<td>1,151</td>
</tr>
<tr>
<td>Poultry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layers</td>
<td>637</td>
<td>836</td>
<td>822</td>
<td>412</td>
<td>1,944</td>
</tr>
<tr>
<td>Broilers</td>
<td>(D)</td>
<td>(D)</td>
<td>(D)</td>
<td>-</td>
<td>(D)</td>
</tr>
</tbody>
</table>

(D) Withheld to avoid disclosing data for individual farms

5 USDA- NASS Quick Stats (Livestock) 2002 Census of Agriculture, Volume 1 Chapter 2: Missouri County Level Data http://www.nass.usda.gov/census/census02/volume1/mo/st29_2_001_001.pdf
Figure 1: Land Use Map for Third Fork Platte River Watershed
4 Description of the Applicable WQS and Water Quality Targets

4.1 Beneficial Uses

Third Fork Platte River has the following beneficial uses:
- Livestock and Wildlife Watering
- Protection of Warm Water Aquatic Life
- Human Health Protection (Fish Consumption)
- Whole Body Contact Recreation (Category B)

The stream classifications and designated uses may be found at 10 CSR20-7.031(1)(C) and (F) and Table H.

Use that is impaired:
- Protection of Warm Water Aquatic Life

4.2 Antidegradation Policy

Missouri’s WQS include the EPA “three-tiered” approach to antidegradation, and may be found at 10 CSR 20-7.031(2).

Tier 1 – Protects existing uses and provides the absolute floor of water quality for all waters of the United States. Existing instream water uses are those uses that were attained on or after November 29, 1975, the date of EPA’s first WQS Regulation, or uses for which existing water quality is suitable unless prevented by physical problems such as substrate or flow.

Tier 2 – Protects the level of water quality necessary to support the propagation of fish, shellfish, and wildlife and recreation in and on the water in waters that are currently of higher quality than required to support these uses. Before water quality in Tier 2 caters can be lowered, there must be an antidegradation review consisting of: (1) a finding that it is necessary to accommodate important economical or social development in the area where the waters are located; (2) full satisfaction of all intergovernmental coordination and public participation provisions; and (3) assurance that the highest statutory and regulatory requirements for point sources and best management practices (BMPs) for non-point sources are achieved. Furthermore, water quality may not be lowered to less than the level necessary to fully protect the “fishable/swimmable” uses and other existing uses.

Tier 3 – Protects the quality of outstanding national resources, such as waters of national and state parks, wildlife refuges and waters of exceptional recreational or ecological significance. There may be no new or increased discharges to these waters and no new or increased discharges to tributaries of these waters that would result in lower water quality (with the exception of some limited activities that result in temporary and short-term changes in water quality).
4.3 Narrative Criteria

General or narrative criteria are contained in Missouri WQS 10 CSR 20-7.030 (3)(A)(C) and (G). These criteria state:

(A) Waters shall be free from substances in sufficient amounts to cause the formation of putrescent, unsightly or harmful bottom deposits or prevent full maintenance of beneficial uses;
(C) Waters shall be free from substances in sufficient amounts to cause unsightly color or turbidity, offensive odor or prevent full maintenance of beneficial uses;
(G) Waters shall be free from physical, chemical or hydrologic changes that would impair the natural biological community.

When the WQS is expressed as a narrative value, a measurable indicator of the pollutant may be selected to express the narrative as a numeric value. There are many quantitative indicators of sediment, such as, TSS, turbidity, and bedload sediment, which are appropriate to describe sediment in rivers and streams. TSS was selected as the numeric target for this TMDL because it enables the use of the highest quality data available, including permit conditions and monitoring data.

5 Calculation of Load Capacity

Load capacity (LC) is defined as the maximum pollutant load that a waterbody can assimilate and still attain WQS. This total load is then divided among a WLA for point sources, a LA for nonpoint sources and a MOS. The LC for this TMDL has been defined as a curve over the range of flows for Third Fork Platte River, see Figure 2, where the solid (red) curve is the TMDL. TSS measurements are shown in Figure 2, where the round (black) points are loads calculated from the concentrations and the corresponding horizontal (red) bars are the percent reduction required to meet the TMDL. Available data indicated up to a 75% reduction in TSS loads is needed to meet the TMDL.

5.1 Modeling Approach

In cases where pollutant data for the impaired stream is not available a reference approach is used. In this approach, the target for pollutant loading is the 25th percentile of the current EDU condition calculated from all data available within the EDU in which the waterbody is located. Therefore, the 25th percentile is targeted as the TMDL load duration curve (LDC). For a full description of the development of suspended sediment targets using reference LDC refer to Appendix B. Specific data sources for this TMDL’s flow and EDU-wide TSS data are listed in Appendix C. Table 4 shows estimates of discharge at flow percentiles.

Third Fork Platte River Sediment Load

Figure 3: TMDL Allocation and Percentage of Reduction for Third Fork Platte River

Table 4: Estimated Flow for Range of Percentiles at the Impaired Segment Outlet

<table>
<thead>
<tr>
<th>Flow Estimate for Third Fork Platte River Based on Drainage Area and Synthetic Ecological Drainage Unit Flow</th>
<th>Percent of Flow Occurrence</th>
<th>Discharge (cubic feet per second)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>10.6</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>25.6</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>48.3</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>93.1</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>251</td>
</tr>
</tbody>
</table>

6 Waste Load Allocation (Point Source Loads)

WLA is the allowable amount of the pollutant that can be assigned to point sources. The WLA is set to the lesser of current permit limits or technology based effluent limits (TBELs). TBELs are defined in a permit based on facility type. Mechanical WWTFs’ permit limits are a weekly average TSS concentration of 45 mg/L and a monthly average TSS concentration of 30 mg/L. Secondary equivalent WWTFs’ permit limits are a weekly average TSS concentration of 60 mg/L and a monthly average TSS concentration of 45 mg/L. Waste water treatment lagoon facilities’ permit limits are up to a weekly average TSS concentration of 120 mg/L and a monthly average TSS.
concentration of 80 mg/L. Additionally, permits can be written to target lower limits if the specific facility is capable of performance exceeding TBELs. Table 5 lists the permitted point sources in the watershed and WLAs based on their current permit limits and permitted design flows. Based on the assessment of sources, point sources do not contribute to water quality impairment relative to sediment impacts on stream biology. Thus, the WLAs are zero percentage net reduction in sediment load. These facilities’ WLAs are set at the current permit limits and conditions. The WLAs listed in this TMDL do not preclude the establishment of future point sources of sediment loading in the watershed. Any future point sources should be evaluated in light of the TMDL established and the range of flows into which any additional load will impact.

Table 2: Permitted Facilities WLAs

<table>
<thead>
<tr>
<th>Facility</th>
<th>Permit number</th>
<th>WLA (tons/day)</th>
<th>d/w/m*</th>
</tr>
</thead>
<tbody>
<tr>
<td>King City WW Lagoon</td>
<td>MO-0049662</td>
<td>NA/0.05/0.03</td>
<td></td>
</tr>
<tr>
<td>Union Star Sewage Wastewater</td>
<td>MO-0096202</td>
<td>NA/0.03/0.02</td>
<td></td>
</tr>
<tr>
<td>Clarksdale WWTF</td>
<td>MO-0117161</td>
<td>NA/0.02/0.01</td>
<td></td>
</tr>
<tr>
<td>MFA Bulk Plant – King City</td>
<td>MO-G350099</td>
<td>preparation and implementation of SWPP</td>
<td></td>
</tr>
</tbody>
</table>

*Permit limits based on current design loads where d=daily, w=weekly average, m=monthly average.

Stormwater runoff from all permitted facilities, also discharge to the stream. Compliance with the Missouri Storm Water Permit will ensure construction sites meet the TMDL area weighted loadings. The permittee will develop a Storm Water Pollution Prevention Plan (SWPPP). The SWPPP ensures the design, implementation, and maintenance of BMPs. EPA assumes that construction activities in the watershed will be conducted in compliance with Missouri’s Storm Water Permit including monitoring and discharge limitations. Compliance with this permit should lead to sediment loadings from the construction site at or below applicable targets.

7 Load Allocation (Non-Point Source Loads)

LA is the allowable amount of the pollutant that can be assigned to non-point sources. The TMDL curve in Figure 2 is set at an estimate of reference conditions over the range of flows. The LA is set at 90% of the TMDL curve.

8 Margin of Safety

A MOS is added to a TMDL to account for the uncertainties inherent in the calculations and data gathering. The MOS is intended to account for such uncertainties in a conservative manner. Based on EPA guidance, the MOS can be achieved through one of two approaches:
(1) Explicit – Reserve a numeric portion of the LC as a separate term in the TMDL.
(2) Implicit – Incorporate the MOS as part of the critical conditions for the WLA and the LA calculations by making conservative assumptions in the analysis.

Available data for Third Fork Platte River shows instances where load exceeds the TMDL (Figure 2). To account for uncertainties in modeling an explicit 10% MOS is assigned to this TMDL. For example, at the flow probability of 0.5 (median flow), the TMDL is approximately 4.6 tons per day and the MOS would be 0.46 tons per day.

9 Seasonal Variation

The TMDL curve represents flow under all seasonal conditions. The LA and TMDL are applicable at all flow conditions, hence all seasons. The advantage of a LDC approach is to avoid the constraints associated with using a single-flow critical condition during the development of a TMDL. Therefore, all flow conditions including seasonal variation are taken into account for TMDL calculations.

10 Monitoring Plans for Third Fork Platte River

No future monitoring has been scheduled for Third Fork Platte River at this time. However, MDNR will routinely examine physical habitat, water quality, invertebrate community, and fish community data collected by the Missouri Department of Conservation under its Resource Assessment and Monitoring (RAM) Program. This program randomly samples streams across Missouri on a five to six year rotating schedule.

11 Public Participation

EPA regulations require that TMDLs be subject to public review (40 CFR 130.7). EPA is providing public notice of this TMDL for Third Fork Platte River on the EPA, Region 7, TMDL website: http://www.epa.gov/region07/water/tmdl_public_notice.htm. The response to comments and final TMDL will be available at: http://www.epa.gov/region07/water/apprtmdl.htm#Missouri.

This water quality limited segment of Third Fork Platte River with watershed in Gentry, Andrew, DeKalb, Clinton and Buchanan Counties, Missouri, is included on the EPA approved 1998 and 2002 303(d) lists for Missouri. This TMDL is being produced by EPA to meet the requirements of the 2001 Consent Decree, *American Canoe Association, et al. v. EPA*, No. 98-1195-CV-W in consolidation with No. 98-4282-CV-W, February 27, 2001. EPA is developing this TMDL in cooperation with the State of Missouri, and EPA is establishing this TMDL at this time to fulfill the *American Canoe* consent decree obligations. Missouri may submit and EPA may approve another TMDL for this water at a later time.
As part of the public notice process, MDNR assists EPA by providing a distribution list of interested persons to which EPA will provide an announcement of the Third Fork Platte River TMDL. Groups that receive the public notice announcement include the Missouri Clean Water Commission, the Missouri Water Quality Coordinating Committee, Stream Team Volunteers in the county, county legislators, and potentially impacted cities, towns and facilities. EPA will respond to comments on this draft TMDL after public notice ends on October 29, 2006, and will post the response to comments on the EPA website: http://www.epa.gov/region07/water/apprtdmdl.htm#Missouri.

References

Missouri Department of Natural Resources (MDNR) (2007). Quality Assurance Project Plan for Wasteload Allocations/Special Studies

Appendices

Appendix A: Location Map for Third Fork Platte River
Appendix B: Development of Suspended Sediment Targets using Reference Load Duration Curves
Appendix C: Data sources Used to Develop TMDL
Appendix A: Location Map for Third Fork Platte River
Appendix B

Development of Suspended Sediment Targets using Reference Load Duration Curves

Overview

This procedure is used when a lotic system is placed on the 303(d) impaired waterbody list for a pollutant and the designated use being addressed is aquatic life. In cases where pollutant data for the impaired stream is not available a reference approach is used. The target for pollutant loading is the 25th percentile calculated from all data available within the ecological drainage unit (EDU) in which the waterbody is located. Additionally, it is also unlikely that a flow record for the impaired stream is available. If this is the case a synthetic flow record is needed. In order to develop a synthetic flow record calculate an average of the log discharge per square mile of USGS gaged rivers for which the drainage area is entirely contained within the EDU. From this synthetic record develop a flow duration from which to build a load duration curve for the pollutant within the EDU.

From this population of load durations follow the reference method used in setting nutrient targets in lakes and reservoirs. In this methodology the average concentration of either the 75th percentile of reference lakes or the 25th percentile of all lakes in the region is targeted in the TMDL. For most cases available pollutant data for reference streams is also not likely to be available. Therefore follow the alternative method and target the 25th percentile of load duration of the available data within the EDU as the TMDL load duration curve. During periods of low flow the actual pollutant concentration may be more important than load. To account for this during periods of low flow the load duration curve uses the 25th percentile of EDU concentration at flows where surface runoff is less than 1% of the stream flow. This results in an inflection point in the curve below which the TMDL is calculated using this reference concentration.

Methodology

The first step in this procedure is to locate available pollutant data within the EDU of interest. These data along with the instantaneous flow measurement taken at the time of sample collection for the specific date are recorded to create the population from which to develop the load duration. Both the date and pollutant concentration are needed in order to match the measured data to the synthetic EDU flow record.

Secondly, collect average daily flow data for gages with a variety of drainage areas for a period of time to cover the pollutant record. From these flow records normalize the flow to a per square mile basis. Average the log transformations of the average daily discharge for each day in the period of record. For each gage record used to build this synthetic flow record calculate the Nash-Sutcliffe statistic to determine if the
relationship is valid for each record. This relationship must be valid in order to use this methodology. This new synthetic record of flow per square mile is used to develop the load duration for the EDU. The flow record should be of sufficient length to be able to calculate percentiles of flow.

The following examples show the application of the approach to one Missouri EDU.

The watershed-size normalized data for the individual gages in the EDU were calculated and compared to a pooled data set including all of the gages. The result of this analysis is displayed in the following figure and table:

This demonstrates the pooled data set can confidently be used as a surrogate for the EDU analyses.
The next step is to calculate pollutant-discharge relationships for the EDU, these are log transformed data for the yield (tons/mi2/day) and the instantaneous flow (cfs/mi2). The following graph shows the EDU relationship:

Further statistical analyses on this relationship are included in the following Table:

<table>
<thead>
<tr>
<th>m</th>
<th>1.34608498</th>
<th>b</th>
<th>-0.509320019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Error (m)</td>
<td>0.04721684</td>
<td>Standard Error (b)</td>
<td>0.152201589</td>
</tr>
<tr>
<td>r^2</td>
<td>0.86948229</td>
<td>Standard Error (y)</td>
<td>1.269553159</td>
</tr>
<tr>
<td>F</td>
<td>812.739077</td>
<td>DF</td>
<td>122</td>
</tr>
<tr>
<td>SSreg</td>
<td>1309.94458</td>
<td>SSres</td>
<td>196.6353573</td>
</tr>
</tbody>
</table>

The standard error of y was used to estimate the 25%ile level for the TMDL line. This was done by adjusting the intercept (b) by subtracting the product of the one-sided $Z_{0.25}$ statistic times the standard error of (y). The resulting TMDL Equation is the following:

$$\text{Sediment yield (t/day/mi}^2) = \exp(1.34608498 \times \ln \text{(flow)} - 1.36627)$$
A resulting pooled TMDL of all data in the watershed is shown in the following graph:

To apply this process to a specific watershed would entail using the individual watershed data compared to the above TMDL curve that has been multiplied by the watershed area. Data from the impaired segment is then plotted as a load (tons/day) for the y-axis and as the percentile of flow for the EDU on the day the sample was taken for the x-axis.

For more information contact:
Environmental Protection Agency, Region 7
Water, Wetlands, and Pesticides Division
Total Maximum Daily Load Program
901 North 5th Street
Kansas City, Kansas 66101
Website: http://www.epa.gov/region07/water/tmdl.htm
Appendix C

Data sources Used to Develop TMDL

USGS stream gages used to generate synthetic flow

- Platte River nr Agency 06820500
- Nodaway River nr Graham 06817700
- Tarkio River at Fairfax 06813000
- One Hundred and Two River at Maryville 06819500
- Nishnabotna River abv Hamburg, IA 06810000
- West Nishnabotna at Randolph, IA 06808500

USGS stream sample sites used to generate EDU TMDL

- Nodaway River nr Graham 06817700
- Little Platte River nr Osborn 06821065
- Little Platte River nr Plattsburg 06821080
- Platte River nr Sharps Station 06821190