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HSI Contaminants Project: Missouri Universities Contact Summary

Notes

John Yang, Associate Prof.

Lincoln University

yangj@lincolnu.edu
573-681-5383

.emailed 2-9-05

.replied 2-17-05

.environment/soil chemist, and recent research is on remediation and risk assessment of lead

contaminated soils in the Jasper County Superfund Site, Southwest Missouri. A few months ago, was involved in a
proposal for ecological assessment of the Jasper County lead mine area using the hyperspectral imagery, but the
proposed project was not funded. heard that NASA had conducted a similar project, but the project was terminated
due to poor correlation with ground truth. Referred me to colleauge Dr. Tesfaye.

Dr. Tesfaye
tesfayes@lincolnu.edu

emailed 2/25/05

replied 2/25/05

.Referred by Dr. Yang as having worked on the aforementioned NASA proposal

.may provide insight as to why project was terminated

.was involved in EPA proposal to use Multispectral NOT HSI at the Oronogo-Duenweg Mining Belt Superfund site in Jasper
County

.indicated that a HSI project to identify contamination in abandoned lead mines (Tri-state) NASA (JPL?) hyperspectral
survey using AVIRIS but was cancelled due to poor results shown by ground-truthing

.MoDNR and EPA Region 7 (Mark Doolan) may be able to provide further info.

.is interested in our project results

Dr. Curt ElImore
UM-Rolla

elmoreac@umr.edu
573-341-6784

emailed 2-9-05

replied 2-9-05

.doesn't have experience with imagery, only soil and water contamination via traditional ground sampling methods
.referred a colleague at UMR Dr. David Rogers

Dr. Monika Moskal

Southwest Missouri State University

Imm878@smsu.edu

emailed 2-9-05

replied 2-11-05

.has worked with hyperspectral data - AVIRIS and casi and has a paper regarding work with AVIRIS in Yellowstone
for casi work collected spectral libraries with ground spectroradiometer

Dr. Kenneth Sudduth
UM Agronomy
SudduthK@missouri.edu

emailed 2-14-05

follow-up email 2-25-05

replied 2/28/05

.has experience with hyperspectral data - probably in agricultural context

.used HSI to detect within crop field variability

.indicated laborious task of processing HSI and little improvement over multispectral method
.included 3 .pdf's of work
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Abstract. This paper briefly describes the methods available for collection,
atmospheric and geometric correction, and processing of hyperspectral
imagery. Discussion of data capture concentrates on logistics of integrat-
ing image acquisition with field data collection. Atmospheric correction is
required to use the imagery with reference spectra from field and
laboratory sensors; a variety of methods for atmospheric correction are
described. Geometric correction is required for integration of the image
data and derived products with other geographic information. A descrip-
tion of methods for single and multiple feature identification is provided.
These all focus on the analysis of the spectral description of surface
materials provided by hyperspectral imagery; methods for multiple feature
identification take advantage of high spectral dimensionality of the
imagery to identify sub-pixel components. A role for spatial analysis
combined with spectral analysis in interpretation of environmental features
is identified.

Key words: High spatial resolution, hyperspectral imagery, analysis,
atmospheric and geometric correction
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1 Introduction

The development of widely accessible high spatial resolution hyperspectral
(HSRH) data is relatively recent, and thus is a relatively novel data source
for analysis of large spatial scale environmental and earth science questions.
Although the principles of spectroscopy are well known and methods for
analysis are well developed, particularly for spectra collected in laboratory
environments (e.g.,Clark et al. 1992; Clark and Swayze 1995), the hetero-
geneity of landscapes and earth surface features in large scale environmental
studies presents new challenges and opportunities for analysis of hyperspec-
tral imagery. Likewise, although principles of ground truthing and accuracy
assessment are well established in remote sensing literature (e.g., Congalton
and Green, 1999), the high spatial resolution of modern data presents
challenges to field data collection and data analysis.

This paper describes some of the major technical issues in capturing and
processing high spatial resolution hyperspectral imagery. We also guide the
reader to major literature on these topics, much of which is contained in the
“grey literature” of conference proceedings and web sites. Methods and
analyses applied to high spatial resolution hyperspectral imagery are
described in the same sequence that a typical user encounters. Explanation
of data collection and image pre-processing is followed by description of a
series of methods for data analysis. We conclude with suggestions for ways to
enhance future analysis of hsrh data.

2 The nature of high spatial resolution hyperspectral imagery

The principles of spectroscopy employed in hyperspectral image data
collection and processing are well known and have been used for many
years (Goetz et al. 1985). Spectroscopy measures the electromagnetic
radiation from objects as a spectrum, with different materials having
different characteristic spectra based on their chemical composition. For
example, minerals (Goetz et al. 1985; Kruse et al. 1993; Clark and Swayze
1995), vegetation (Ustin et al. 1999), plant properties (Gamon et al. 1993,
1995; Roberts et al., 1993; Ustin et al. 1996) snow and ice (Clark and Swayze
1995), and soils (Palacios-Oreuta and Ustin 1996) have all been successfully
and directly identified and measured using spectroscopy. Hyperspectral
remote sensing measures the spectral properties of the environment using
imaging spectrometers placed on airborne and spaceborne platforms. A list
of hyperspectral imaging systems can be found at http://rst.gsfc.nasa.gov/
sect13/is_list.html.

The word ‘“hyper,” literally translated, means ‘“‘excessive in extent or
quality” or “over, above, beyond” (Gove 1976, p. 1112). In contrast to
multispectral scanners, the amount of spectral information recorded by
hyperspectral spectrometers thus exceeds the amount required to identify
many features. This “excess” information results from the high spectral
resolution (i.e., narrow band widths) relative to multispectral scanners and
the wide range of spectra that are recorded, which together enable users to
extract subtle differences in spectral signatures. There is no absolute
definition of how many bands are needed or how narrow the bandwidths
need to be to make imagery “hyper,” although most sensors that are called
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hyperspectral have 48 or more bands with spectral resolutions of 20 nm or
smaller. A number of the key characteristics that influence the data collected
by hyperspectral sensors are described in Table 1.

Just as there is not a specific number of bands required for imagery to be
hyperspectral, there is no clear threshold of pixel size at which coarse spatial
resolution imagery transitions to high spatial resolution imagery. For the
purposes of our work, we define high spatial resolution as imagery with
pixels that are 5 m or less in size. This size range represents (for hyperspectral
imagery), a spatial resolution that has only recently become available as
sensors have been mounted on low flying aircraft. In addition, pixels that are
5 m or smaller in size present georectification, coregistration and ground
truthing problems that are not present with coarser spatial resolution
hyperspectral analysis.

3 Data collection and pre-processing of the imagery
3.1 Flight planning for high spatial resolution hyperspectral data collection

At the present time, acquisition of airborne hsrh imagery is limited by
instrument availability and cost. A number of instruments, such as Probel
and HyMap, are commercially available, while other instruments such as
AVIRIS are available to NASA-supported researchers. In addition to
financial costs, data collection using commercial instruments has a number
of logistical constraints. Weather conditions influence flights and the quality

Table 1. Properties of imaging spectrometers

Property Description

Spectral range describes the measured range of the electromagnetic spectrum.
Different materials absorb in different wavebands thus the spectrum
recorded by an instrument should include these characteristic
wavebands to help identify different materials.

Airborne and spaceborne instruments typically record in the visible
and near infrared spectrum (0.4 um to 2.5-3.0 um).

Spectral bandwidth the width of an individual band in the spectrometer. Bands are
adjacent in a spectrometer to provide continuous measurement of
the entire spectrum. The narrower the bandwidth, the narrower the
absorption features that can be measured and the greater the
resolution of the spectrum.

Bandpass profile describes the shape of the response of the detector in the
spectrometer across the spectral bandwidth. The shape is usually
gaussian. The width of the bandpass profile is described as the
wavelength at the 50% response level of the function, the Full
Width at Half Maximum.

Spectral sampling the distance in wavelength between bandpass profiles for each
channel as a function of wavelength.
Signal to noise ratio describes the precision with which the spectrometer measures the

spectrum relative to the detail needed to resolve particular features.
A lower signal to noise ratio is needed for strong spectral features
while a higher signal to noise ratio is needed for weak features.
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of data collected, flight scheduling must be coordinated with field data
collection, since ground-based data may be required on the day of the flight
or in the several days immediately surrounding it. We suggest that
individuals planning HSRH-flights have a project management strategy that
particularly focuses on the logistics of data collection.

3.2 Initial considerations for image processing and field data collection

As with any remote sensing analysis, the nature of field data collection and
image pre-processing required to use hsrh imagery will depend on how the
data will be analysed. Of particular importance is whether a “top-down” or
“bottom-up’ analysis is envisioned.

Top-down approaches use field mapping to train the imagery to detect
certain features. Field surveys and accurate georeferencing and co-registra-
tion of images and field maps are required for top-down approaches. In some
instances however, atmospheric corrections may not be required with top
down approaches. The small geographic extent of hsrh images reduces the
potential for significant variations in atmospheric effects across the scene,
while mapping field features directly to the image means that the classifying
algorithm can incorporate atmospheric effects into the feature spectra as it
searches the image to find similar features. A particular feature type will
therefore probably appear similar across the entire image and the atmo-
spheric effects should not overly confuse the mapping process. As one
extends the analysis over larger areas or between images, however, ignoring
atmospheric effects becomes increasingly untenable.

In contrast, bottom-up approaches typically use ground-based or labora-
tory-based spectral libraries to identify key features. In this situation,
atmospheric corrections are absolutely essential, because the effects of the
atmosphere must be removed in order for image spectra to match library
spectra. Because the identification of features relies on the matching of
spectra rather than overlaying ground maps on the imagery, georeferencing
and image co-registration can be relatively unimportant in the bottom-up
approach. In bottom-up approaches using library spectra accurate atmo-
spheric corrections are particularly important, where specific bands are very
strongly affected by atmospheric composition (Table 2). The great advantage
of bottom-up approaches is that the same spectral library can be extended
over wide areas and across multiple images to identify specific feature types,
as long as the images are atmospherically corrected.

Table 2. Absorption wavelengths of common atmospheric constituents

Constituent Absorption wavelength (um)
Ozone 0.35
9.6
CO, 1.6
2.005
2.055
Water 0.69
0.72

0.76
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HSRH-imagery can sometimes provide the unique opportunity to take
advantage of the strong points of both top-down and bottom-up
approaches, while avoiding some of their pitfalls. Because the pixel
resolution is small, the image may contain pixels that contain only the
feature of interest (e.g., a wetland, a plant species type, or a particular soil
type). Spectra can be collected from these pixels to create an airborne
spectral library. The great advantage of this type of library is that it
incorporates the atmospheric effects in the feature spectra and therefore
does not require applying the many assumptions and uncertainties inherent
in atmospheric corrections and the matching of image spectra with library
spectra. Likewise, the ability to visually identify and map these pure pixels
directly to the image (much like an air photo) means that precision field
mapping and image georectification may not be necessary to accurately map
features on the image.

3.3 Atmospheric corrections

Analytical approaches: As noted above, the data collected by airborne or
spaceborne hyperspectral sensors are not immediately comparable to
laboratory or ground-based spectra, because the atmosphere alters the
spectral signal reaching the sensor. Data collected using imaging spectrom-
eters therefore must be converted from raw radiance values to atmospher-
ically corrected reflectance values to allow spectra to be compared with
reference spectra in spectral libraries (Kruse 1994). Ideally, absolute
reflectance is calculated, although there are several methods that produce
relative reflectance.

Image processing to remove atmospheric effects requires both calibration
and atmospheric correction. Calibration adjusts the image by converting raw
radiance values to absolute or relative reflection values. Atmospheric
corrections then adjust these reflectance values for each pixel and wavelength
to adjust for some combination of differing path lengths and effects of
atmospheric composition (Table 2).

Calibration uses several methods to convert measured values to relative
reflectance or absolute reflectance. Flat field calibration, logarithmic resid-
uals (Green and Craig 1985) and internal average relative reflectance (IARR)
(Kruse 1988) produce relative reflectance spectra. Flat field calibration is
used to normalize images to an area of known reflectance on the ground. The
method divides the ground reference spectra into the image spectra for each
band, then uses the resultant ratios to calculate the relative reflectance at
each pixel. TARR calibration is used to normalize images to a scene’s average
spectrum. This is effective for reducing imaging spectrometer data to relative
reflectance in an area where no ground measurements exist and little is
known about the scene. An average spectrum is calculated from the entire
scene; this is then used as the reference spectrum and divided into the
measured spectrum at each pixel of the image to estimate relative reflectance.
If this method must be used, it operates best in arid areas with no vegetation.

Empirical line calibration and calibration to an atmospheric model are
methods for estimating apparent (absolute) reflectance. Empirical line
calibration is used to force image data to match selected field reflectance
spectra and requires a priori knowledge of a site (Conel et al. 1987).
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Reference field or laboratory spectra are collected for known locations that
cover the full range of spectral variation in the image. Specific pixels from the
image are associated with these reference spectra and linear regression is used
to calculate the gain and offset needed to convert the digital number for each
image band to reflectance. This is equivalent to removing the solar irradiance
and the atmospheric path radiance. The instrument digital numbers are then
converted to reflectance using the gain and offset values. Of the empirical
methods, this produces spectra that are most comparable with field or
laboratory spectra.

Calibration to apparent (absolute) reflectance can be made using an
appropriate atmospheric model (Gao et al. 1993). The Atmospheric Removal
Program (ATREM) (Gao and Goetz 1990) is a radiative transfer model-
based method for calibration to absolute reflectance that requires no ground-
based measurement. The method was developed for 224 band AVIRIS data.
A three channel ratioing method uses the water vapor absorption bands to
calculate the amount of water vapour for each pixel. This produces an image
of water vapour concentrations. This image is used with transmittance
spectra of atmospheric gases to produce scaled surface reflectance. Similarly,
MODTRAN, a radiative transfer model (Berk et al. 1998, 1999) can be used
to estimate reflectance (Adler-Golden et al. 1998; Gastil and Melack 1998).

A variety of combination methods have also been used. Clark et al. (1995)
used a combination of ATREM and the empirical line method to correct
model errors in ATREM by calculating normalization factors for one pixel
and then applying them to the rest of the ATREM-corrected image. Goetz
et al. (1998) combined ground measurements of spectral irradiance with
MODTRAN to derive a model equivalent to an empirical line method
correction that did not require uniform ground targets of different
reflectance. Goetz et al. (1997) and Boardman (1998) also describe an
analytical process, the Empirical Flat Field Optimal Reflectance Transfor-
mation (EFFORT) that bootstraps a linear adjustment to apparent
reflectance spectra to improve the accuracy of spectra from AVIRIS
following calibration with ATREM. This improves the comparison with
library-based spectra, the basis of many of the image interpretation methods.

The effect of different methods for calibration and atmospheric correction
on the characteristic spectral profile for materials is pronounced. Figure 1
shows the raw digital numbers and atmospherically corrected spectral profile
for a pixel measured using the Probel hyperspectral instrument. Data
analysis to identify materials is sensitive to the calibration method used,
particularly when generating spectral libraries from imagery, or comparing
images to field or laboratory derived reference spectra. Correction using an
atmospheric model is recommended since the resulting data can be used with
spectral libraries and are comparable for different images.

Data collection considerations: The amount of field effort needed to collect
ground-based data for atmospheric corrections varies from nothing to
extensive, depending on the algorithm that is used. The IARR method
requires no field data, which eliminates field expenses, but at the cost of
accuracy. ATREM is far more accurate than the IARR method and requires
no field data, but does require an imaging spectrometer that collects narrow
band width data in the water vapor absorption bandwidths. Flat field
calibration only requires spectral data from one site. Empirical line
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Fig. 1. Probe 1 raw and atmospherically corrected spectral profile

calibration requires a minimum of two ground references sites that represent
end members of spectral reflectance, although a number of reference sites
along the continuum of reflectance values is preferablee. MODTRAN
requires extensive ground-based measurements, including RADIOSONDE
data to characterise atmospheric thermal structure and water content at
different levels.

A number of problems commonly arise with collection of field spectra for
atmospheric corrections. Reference targets should be at least 3 x 3 pixels in
size to insure that the center pixel provides a pure signal on the image that
is uncontaminated by spectral mixing with adjacent pixels. Finding
homogenous features of this size can be difficult, especially in natural
settings. Because one is usually trying to collect ground reference data on
the day of the flight, one does not have the imagery to guide spectral end
member selection for the empirical line approach. Too often one discovers
at a later date that the ground sites only represent a portion of the range of
spectral reflectances. Finally, the uncertainty in flight timing and difficulties
with keeping field teams permanently on alert can mean that there are
significant time gaps between ground data collection and image acquisition,
which in turn casts doubt on the validity of the ground reference data as a
guide to calibrating the image. If ground-based calibrations techniques are
going to be used, researchers should therefore spend significant time in the
field prior to the flight to locate reference sites that are sufficiently large,
that represent light and dark end members, and that are relatively
unchanging over time.
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Spectral data to develop spectral libraries typically come from laboratory-
based spectrometers or portable field spectrometers, all of which are costly to
buy or rent and require expert operators. Financial and personnel constraints
can thus be a major constraint if equipment and expert operators are not
available at reduced cost through research institutes or if existing spectral
libraries (Table 3) cannot be used.

4 Geometric Corrections

Analytical approaches: Most hyperspectral imaging systems record spectra
using cross track or “whisk broom” sensors, which record the complete
spectra for one pixel on the ground before moving (“whisking”) to the next
pixel. This contrasts with along track (or ““push broom”) sensors that record
multiple spatial instances of a particular spectral band at one time and are
more akin to an optical photograph in their geometric characteristics.
Since hyperspectral imaging systems collect data pixel-by-pixel as they scan
across track perpendicular to the flight line, the ground location of these
pixels can jump dramatically from pixel to pixel due to the pitch, yaw and
roll of the aircraft coupled with the cross track scanning of the instrument.
Geometric correction of hyperspectral imagery is therefore important in
order for the data to be referenced to real world locations and to be used with
other spatially referenced data sets. This presents three issues for geometric
correction. First, the overall geometry of the imagery is variable since each
pixel is collected separately. Standard geometric correction techniques (using
n-term polynomial or rubber sheet warping with control points to register
images to ground coordinates) is inappropriate and usually unsuccessful
(Clark et al. 1998). Second, the pixels may be of variable spatial dimension.
Third, there may not be complete coverage of the ground surface. In
AVIRIS, which was designed for the relatively stable and predictable motion
of the ER-2 platform flying at 20 km elevation, the sensor scanning frequency
is tuned to the forward motion of the platform and images are spatially
continuous with constant pixel size. Airborne hyperspectral instruments in
other platforms are sensitive to the motion of the platform (Boardman 1999).
Clark et al. (1998) and Boardman (1999) have presented methods for
geometric correction of hyperspectral imagery from on-board navigation
devices. Clark et al. (1998) use a series of equations to correct AVIRIS for
the motion of the ER-2 platform, although they do not correct for
topographic effects (e.g. changes in elevation). Boardman (1999) uses an
onboard Global Positioning System/Inertial Navigation System, C-MIGITS-
IT to obtain x,y,z (from the GPS) and 3-axis attitude data (from the INS) to

Table 3. Reference libraries for spectra

Features in library Reference Library source

Minerals Clark et al. (1993) http://speclab.cr.usgs.gov
Minerals Grove et al. (1992) http://speclib.jpl/nasa.gov
2000 natural and http://speclib.jpl/nasa.gov

man-made materials
Vegetation Clark et al. (1993) http://speclab.cr.usgs.gov
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develop and apply a full photogrammetric camera model for low altitude
AVIRIS data. The model uses ray-tracing to locate each pixel on the ground
surface, a digital elevation model providing ground elevation data. The
output is ortho-corrected with full (x,y,z) geo-referencing for each pixel
(Boardman 1999). This method has potential for application to any
hyperspectral image data, provided GPS/INS data are collected at a
frequency that matches the scan frequency of the imaging device and can
be digitally tied to the imagery using a common time reference.

The ray-tracing technique is a powerful technique that is both accurate and
precise. It is also complex, however, and is not presently built into
commercial software. Researchers wanting to use the technique must
therefore contract through the commercial vendor that developed it. If the
ray-tracing technique is not available because of instrument or logistical
constraints, one must then choose between less than optimal solutions. If the
plane experienced significant turbulence, the standard polynomial transfer
functions are particularly inappropriate because they assume linear or
curvilinear variations in pixel location across the entire image, when in fact
the image locations vary in a non-linear manner. In this case, a local
triangulation technique is preferable, with multiple local control points (e.g.
trees) being used to segment the image into triangles, with the images within
each triangle being stretched to fit that local surface.

Data collection considerations: HSRH imagery poses particularly severe
constraints on the geographic precision required to coregister ground-based
maps and pixel locations on images. Locational inaccuracies of only 0.5-1 m
can lead to mismatches between image pixels and field maps with high spatial
resolution data (Wright et al. 2000; Marcus et al. 2001). When supervised
classification techniques are used, this mismatch of image pixels and ground
features associates the wrong spectra with ground features, which in turn
generates significant inaccuracies in image classification.

Avoiding these mismatches is particularly difficult with HSRH imagery.
Even if the image is georeferenced to +2 m using the ray-tracing approach, it
is difficult to locate features on the ground with this degree of accuracy,
especially in natural settings without bench marks, intersections, and features
that have well identified point locations. Considerable pre-flight planning
should therefore be devoted to considerations of image and map overlay.

The optimal and most accurate approach to precise coregistration of
imagery and maps is to map directly to the imagery, using the imagery like an
air photo. This is not possible in many cases, however, because researchers
often want to map as close to the flight date as possible to insure that
mapped features (e.g., stream depths, vegetation cover, soil moisture, etc.)
represent conditions shown on the imagery. Some operators of hyperspectral
sensors cannot provide imagery rapidly, while others can have same day turn
around under the appropriate circumstances. If mapping directly to imagery
is a desired method, users should query sensor operators about the turn
around time that is required and make this part of the data contract.

Precision location can also be accomplished by placing targets in the field
that show up clearly on images. This works well for marking the corners of
sample grids or the ends of transects. We have found that 2 x 2 m plastic
ground tarps show up well in natural landscapes with pixel resolutions as
large as 5 m. The tarps saturate the pixel spectra, particularly in near
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infrared bands where the plastic reflectance is radically different than the
natural background materials.

One can also do precision mapping using classic field survey equipment or
GPS. Unless ground truth sites exist that cover many pixels, however, we do
not recommend this approach. Ground map precisions as tight as +0.5 m
challenge GPS and survey techniques unless field teams are willing to expend
significant time, which in turn limits the amount of ground data that can be
collected. Second, even with sub-meter precision and accuracy in the ground
map, it is almost impossible (even with ray-tracing) to generate comparable
precision in the image, unless meter scale DEMs are available. Coregistration
of imagery and field maps may therefore still be inaccurate. To overcome this
problem, ground truth sites that cover many pixels should be mapped. This
allows boundary pixels where overlap errors occur to be discarded from
overlay analysis. Unfortunately, many features (e.g., a particular vegetation
type such as willows) may not cover multiple pixels even on HSRH-imagery.

Finally, with hyperspectral data, it may not be necessary to have precise
locations for ground sites. As noted previously, if a feature has a clear
spectral signature, the feature can be detected using spectral matching
techniques discussed below. Given the severe coregistration problems
associated with HSRH-imagery, this spectral matching approach should be
seriously considered as an alternative to supervised classification whenever
hyperspectral data are available.

5 Data analysis

Hyperspectral imagery presents a number of opportunities for interpretation
and analysis and can make use of methods beyond the standard statistically-
based image classification methods used in multi-spectral remote sensing.
Multispectral images are often analysed using multivariate statistical classi-
fiers that treat individual wavebands in the imaging instrument as a series of
independent variables. These “‘standard” methods for image classification
can be applied to hyperspectral imagery although statistical classification of
high-dimensional data that exhibits correlation between spectral bands fails
to take full advantage of the key feature of the imagery, namely that it
provides access to a measurement of a near complete spectrum for each pixel
using narrow wavebands. The data provided by calibrated hyperspectral
imagery are comparable with laboratory spectra measured for materials.
These reference spectra provide digital ‘lookup’ keys to the composition of
pixels and provide a direct measurement of the material being sensed.

A number of specialised methods have been developed to take advantage
of the characteristic spectra of materials and there are several reference
spectral libraries that provide descriptions of the spectra of materials
(Table 3). Further libraries tailored to specific applications of hyperspectral
imagery are needed to complement the libraries organised around classes of
materials. For example, for health related applications, libraries may be
developed that contain spectra for characteristics of habitats that are known
to have a close association with vectors of diseases. Kitron et al. (1996) use
Landsat Thematic Mapper data and GIS to investigate the distribution of
tsetse flies in Kenya and the approach could be extended to hyperspectral
imagery with appropriate spectral libraries. Analysis of hyperspectral
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imagery usually requires an empirical match to be made between the image
spectra and a set of reference spectra (end-members) from a spectral library
for known materials. Reference spectra can be measured in the laboratory or
field; they may also be derived from the hyperspectral imagery itself.

Analysis methods focus either on a) classifying each pixel into a single class
by identifying the main material in the pixel, or b) estimating the
composition of a pixel using an un-mixing method that identifies multiple
materials and their relative abundance within a pixel.

5.1 Single feature identification

There are four main methods for identifying single feature types within
hyperspectral imagery:

a) binary encoding,

b) continuum removal,

¢) spectral angle mapper, and
d) spectral feature fitting.

Binary encoding: Binary encoding (Mazer et al. 1988) is a classification
method that encodes the image data and reference spectra into 0 s and 1s
based on whether a band falls below or above the spectrum mean. An
exclusive OR function is then used to compare each encoded reference
spectrum with the encoded image spectra and classify the image. Each pixel is
classified to the material with the greatest number of bands that match,
above a minimum match threshold.

Continuum removal: Continuum removal normalizes reflectance spectra to
allow comparison of individual absorption features from a common baseline
(Kruse et al. 1985; Clark et al. 1987; Kruse et al. 1993a). A convex hull that is
fitted to the spectrum describes the continuum. Straight-line segments
connect local spectra maxima to define the convex hull, the first and last
spectral data values being on the hull by definition.

Spectral angle mapper: The Spectral Angle Mapper (Kruse et al. 1993b)
matches pixel spectra to reference spectra using a measure of spectral
similarity based on the angle between the spectra treated as vectors in an n-
dimensional space with dimensionality, n, equal to the number of image
bands. Smaller angles represent closer matches. The angle between each pixel
and all reference spectra can be mapped and pixels assigned to the material
for which the spectral angle is smallest and within a defined limiting angle.
When used on calibrated reflectance data, the spectral angle mapper is
relatively insensitive to effects of illumination and albedo since the angle
between vectors is measured rather than the length of the vector.

Spectral feature fitting: Spectral Feature Fitting uses least squares methods
to compare the fit of image spectra to selected reference spectra (Clark et al.
1990, 1991; Crowley and Clark 1992; Swayze and Clark 1995). Reference
spectra are scaled to match the image spectra after continuum removal from
both data sets. The method measures absorption feature depth which is
related to material abundance.
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5.2 Un-mixing methods

Un-mixing methods take advantage of the high-dimensionality of the
hyperspectral data to identify sub-components of the spectrum for each
pixel. These methods identify the relative contribution of different materials
to the spectral composition of a given pixel. They thus provide the capability
to map sub-pixel features and abundance of different materials. There are
three main methods for un-mixing:

a) matched filtering,
b) spectral un-mixing/spectral mixture analysis, and
¢) mixture tuned matched filtering.

Matched filtering: The Matched Filtering method is described by Harsanyi
and Chang (1994) and Boardman et al. (1995). Matched filtering performs a
partial un-mixing of spectra to estimate the abundance of user-defined end-
members from a set of reference spectra. Matched filtering does not require
knowledge of all the end-members within an image scene and can also be
used to identify single feature types.

Spectral un-mixing/spectral mixture analysis: Spectral un-mixing (Board-
man, 1989, 1993) determines the relative abundance of materials based on
the spectral characteristics of materials. Reflectance in each image pixel is
treated as a linear combination of the reflectance of each end-member
present within the pixel. The number of end-members must be less than the
number of spectral bands and all of the end-members represented in the
image must be used. Boardman (1989) applies singular value matrix
decomposition to un-mix hyperspectral data. Spectral libraries provide the
initial data matrix to this method.

Mixture tuned matched filtering: Boardman (1998) describes mixture tuned
matched filtering (MTMF), a method that builds on the strengths of matched
filtering and spectral un-mixing. MTMF combines the ability to map a single
known target without knowledge of all end-member signatures with the
leverage of mixed pixel models including constraints on feasibility. MTMF
also reduces the incidence of false positives.

6 Opportunities for spatial analysis of high spatial resolution
hyperspectral imagery

The methods described for analysis of hyperspectral imagery identify
materials based solely on the analysis of spectra. The spatial component of
hyperspectral imagery offers an additional feature of the data with potential
for application in interpretation and mapping of landscape objects. Spatial
analysis may help in at least two ways. First, the spatial structure of
spectral information in imagery can be used to augment spectral based
analysis. Pinzon et al. (1998) and other papers in this issue address the use
of spatial analysis as a complement to spectral analysis. Second, spatial
analysis may be used to interpret the distribution of materials identified
from the imagery by spectral analysis to map and model environmental
objects of interest.
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level of spectral and spatial detail necessary to discriminate different types of surfaces such
as vegetated areas, limed areas, exposed tailings, and any mixture of these surfaces.

Hyperspectral imagery from the Compact Airborne Spectrographic Imager (casi) in the
visible and near infrared was used to characterize the mine tailings site at the INCO Copper
Cliff tailings impoundment area in Sudbury. This site was chosen because of its well
initiated revegetation program by INCO company (INCO Litd, 1997) and earlier work
conducted by Singhroy (1995a, 1995b, 1997). It contains a large variety of mine tailings,
different levels of vegetation regrowth, as well as limed and non-limed arcas. The image
was classified using spectral matching.

2. METHODOLOGY

Ground survey

The ground survey included a visual characterization of the site and the collection of field
spectra using a GER 3700 spectrometer operating between 400 nm and 2500 nm. Spectra
of oxidized and non-oxidized (fresh) mine tailings of different composition (pyrite,
pvrrhotite), green and dry vegetation, lime, straw, and rock were collected in August 1996.
These spectra as well as the visual assessment were used to validate the results of the
image classification.

casi imagery

High spatial and spectral resolution casi data were acquired in the visible and near infrared
and calibrated to radiance. Flight data were acquired on August 24, 1996 in 72 contiguous
9 nm wide spectral bands covering a wavelength range from 400 nm to 950 nm. The
radiance data were multiplied by a factor of 1000 to achieve digital counts. Prior to the
data analysis, a roll correction was applied using the navigation data to remove first-order
geometric effects due to aircraft motion.

Preclassification processing of image data

In order to reduce the number of bands and thus the redundancy in the data, a Minimum
Noise Fraction Transformation (MNFT) was performed on the data cube. This
transformation gives similar results as Principal Components but, besides reducing the
amount of data, it also reduces their noise content (Research Systems Inc., 1997). For the
Copper Cliff mine tailings site, the first four components as well as the 6th and 7th MNFT
features were kept for classification purposes. The 5th MNFT feature displays strong noise
and, therefore, was not used in the classification.

Classification using the Spectral Angle Mapper (SAM)




SAM is a spectral matching technique that classifies spectra on a pixel basis according to
its resemblance to a reference or end-member spectrum. An end-member spectrum
represents a pure pixel, which is composed of a single matenal (e.g. lime) rather than a
mixture of two or more materials (e.g. lime, soil, and grass) (Boardman, 1993). Its spectrum
represents a pure material and can be used as a reference spectrum for that specific
material. Most pixels in an image are a mixture of many end-members. The SAM method
uses an algorithm that ealculates the spectral angle between the reference spectrum and the
spectrum to be classified. It projects the spectra as vectors in space with a dimension that is
equal to the number of bands (Research Systems Inc., 1997). Figure 1 shows a simplified
two dimensional representation of the SAM method where two materials are compared
using two spectral bands. SAM considers the direction of the vectors and not their length.
Since the length of the vectors is related to the degree of illumination, SAM is not sensitive
to illumination since only the direction of the vectors (colour) is taken into account when
calculating the spectral angle. The resulting product of SAM classification is a series of
angle images, one for each end-member, where each pixel is assigned an angle value. The
smaller the angle, the more similar is the pixel spectrum to the end-member spectrum.

A

band |

—

"dark point" band J

Figure 1. Two-dimensional example of the Spectral Angle Mapper (SAM)
(Research Systems Inc., 1997)

End-member collection

End-member spectra were collected from the image data using the purest pixel determined
by the Pixel Purity Index (PPI) (Research Systems Inc., 1997). Three end-members were
chosen for the classification: mine tailings, limed areas, and vegetation. The grass and trees
were incorporated mto the same class (vegetation).

3. RESULTS AND DISCUSSION

Colour composites and image spectra













SAM classification results

The images in Figure 4 display the similarity of each pixel spectra to the given end-member
spectra. They should be compared to the images of Figures 2 and 3. Pixel values represent
the spectral angle in radians measured from the end-member spectra. The lowest angle
values represent the most similar pixel spectra to the end-member spectra and are
displayed in red. The highest angle values represent the least similar pixel spectra to the
end-member and are displayed in black. Any angle values in between are allocated a colour
displayed in the colour scale as shown in Figure 4.

Figure 4 shows the mine tailings, lime and vegetation end-member images. Because no end-
member was collected for water, it is normal that this class is not part of the results. The
water bodies appear black in the three displayed end-member images. However, the three
water ponds labeled as A appear as light blue in the tailings end-member image and black
in the lime and vegetation images indicating that they relate slightly to mine tailings in their
composition.

There is a pattern of two rectangular polygons that emerge in the centre part of the images
(B) of the tailings and vegetation end-members. This pattern is not present in the lime end-
member image but some lime is present in some parts of the area. It represents an area of
seedling, partly limed, containing a very small amount of grass (light blue in vegetation
image).

The C label shows a limed arca where grass grows in different concentration over the lime.
Note that this area appears black in the tailings end-member image indicating that the
tailings surface is completely covered by lime and vegetation. The places where the
vegetation end-member image displays a red colour (high amount of vegetation) appear
black in the lime end-member image. The ground survey indicates that the amount of
vegetation on these patches is high enough to cover the entire limed surface, thus showing
a certain level of success in the revegetation process. The same thing is happening to a
lesser extent in the D and E areas.

The arca labeled as F shows a grass area. Compared to tree areas (), grass areas do not
cover as much ground as forested areas and are composed of dry and green grass so that
the amount of green vegetation present in the pixels of these arcas is less than in pixels of
the forested areas. Thus, treed areas appear red while grass areas range from light blue to
yellow and occasionally red as on the C area.

The area labeled as H shows an incursion of tailings into the grass area. This patch of
tailings is mixed with lime as shown on the tailings and lime end-member images.

High lime content (I) is well expressed by the red colour in the lime end-member image
except for the two J areas where the high lime content values are related to dry pyrrhotite
tailings. This illustrates how hyperspectral imagery can be used to differentiate tailings
surface features over large areas once validated through ground observation.



4. CONCLUSIONS

This study has demonstrated the usefulness of hyperspectral casi data to characterize mine
tailings sites. Mine tailings, limed surfaces and vegetation can be well characterized
assuming that ground observation is present to validate the results. The results thus far are
promising. However, further investigation should be made to address the following issues:
(1) results should be compared for end-members extracted from the image and those
collected from the ground to see if the results can be improved; (2) other analysis methods
such as spectral unmixing and matched filter should be investigated; (3) knowledge of the
chemical composition of the water bodies on the Copper Cliff mine tailings site would help
in deciding whether hyperspectral remote sensing can be used to estimate the degree of
contamination of the water bodies on mine tailings sites as well as any leakage from the
tailings areas; (4) end-member images should be calibrated so that different years of
monitoring can be compared.
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2.2 Image data preprocessing

The casi image data were roll corrected using the
navigation data to remove most significant aircraft
motion effects from the imagery. Surface reflectance was
retrieved from the radiance data using a look-up table
based approach implemented in the Imaging
Spectrometer Data Analysis System (ISDAS) (Staenz et
al, 1997 and 1998).

2.3 Band simulation

Band reduction. The number of bands were reduced by
skipping every other band of the 68-band casi dataset
resulting in a 34-band dataset. This procedure was
repeated to produce datasets containing 17, 8, and 4
bands, respectively.

Varying bandwidth. In order to test the effect of varying
the bandwidth on the unmixing results, 6 bands were
chosen based on the gecbotany dataset from Staenz
(1996) (480 nm, 548 nm, 608 nm, 676 nm, 745 nm, 829
nm). A gaussian spectral response profile centered at
each of the & selected bands was used to simulate the
bandwidths ranging from 8.5 nm to 76.5 nm with an
increment of 8.5 nm.

Sensor simulation. Quickbird spectral bands as shown in
Table 1 were simulated using gaussian spectral response
profiles.

2.4 Spectral unmixing

Constrained spectral unmixing was performed on all the
simulated casi data cubes using an algorithm
implemented in ISDAS (Szeredi et al., 1998 ; Boardman,
1989 and 1990). The method decomposes the image

spectra S in terms of endmember spectra Si ;
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endmember i contributing to the image spectrum S , and
N is the total number of endmembers. The result of the
unmixing 1s a set of N fraction images which show the
fractional abundance of the endmembers. Endmember
spectra were selected from the original image using the
three first principal components (PCs) which account for
T7%, 21% and 1% of the variability in the dataset,
respectively. Endmembers are the purest pixel spectra in

the dataset and are often located at the extremities of the
scatterplot when two PCs are plotted against each other.
Five endmember spectra were identified as shown in
Figure 1: lime, green vegetation, oxidized tailings, water 1,
and water 2 (distinct from water 1 because of it’s high
content of sewage, tailings, and lime). According to the PC
scatterplots, the endmember spectra were the same for the
band reduced, varying bandwidth, and sensor simulation
data cubes. The unmixing results of the simulated datasets
were then compared to the unmixing results of the full 63-
band dataset. Comparison between the 68-band dataset
unmixing results and the unmixing results from the
simulated cubes was achieved by computing the absolute
and relative difference.

3. RESULTS
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Figure 1. Endmember spectra.

The relative difference between the Quickbird simulation
and the 68-band unmixing results is shown in Figure 2 for
the green vegetation endmember. The plot shows that low
fractions display a larger relative difference than higher
fractions. For a constant absolute difference this result is to
be expected.
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Figure 2. Relative difference (solid curve) and standard deviation
(vertical bars) for the green vegetation endmember between unmixing
results achieved with Quickbird simulated data and the 68-band casi data.
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3.1 Band reduction

Figure 3 shows the effect of varying the number of casi
bands on the spectral unmixing results. The absolute
mean difference (AMD) remains under 0.02 for all the
endmembers using 34, 17, and 8 bands. When using 4
bands the overall AMD increases but remains below 0.03
for green wvegetation and lime. The  two water
endmembers consistently display a higher AMD than the
other endmembers. This can be understood from eq. (1).

The water endmember spectra §w1, S, . are relatively

w2 2
dark, hence the spectral magnitudes ‘g WI‘ and ‘ng‘ are
small compared to the other endmembers. Due to this

fact the fractions f  and f , can vary by a relatively

large amount without changing the sum spectrum in
eq.(1y too much. The constrained unmixing takes

advantage of this fact and hence the fractions [, and

S, vary more than the fractions of the other

endmembers.
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Figure 3. Absolute mean difference (AMD) between the 68-band
unmixing results and unmixing results of a varying
number of bands for each endmembers.

3.2 Varying bandwidth

Figure 4 shows the AMD and its standard deviation
between the 68-band unmixing results and the varying
bandwidth of the 6 selected band data cube. AMD
slightly increases with increasing bandwidth but the
AMD remains below 0.005. The standard deviation of
the AMD decreases as the bandwidth increases since the
local variations (in wavelength) in the spectrum are
smoothed over. This results in less fractional variations
and a smaller standard deviation.
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Figure 4. Absolute mean difference (AMD) and standard deviation
between the 68-band umixing results and the unmixing
results of varying bandwidth of the 6-band datacube.

3.3 Sensor simulation

In Figure 5 the AMD is shown for each endmember for the
Quickbird simulation unmixing results against the 68-band
unmixing results. Unlike for the case of four bands used in
Figure 3, the four Quickbird bands were selected to
enhance differences between the spectra and hence display
lower AMD. As pointed out before, the two water
endmembers, followed by the oxidized tailings, the green
vegetation and the lime endmembers, show an inverse
relationship between their spectral reflectance magnitude
and their AMD. AMD values for all endmembers do not
exceed 0.015. Similarly, the standard deviation of the
AMD 1s related to the magnitude of the endmember
spectra which indicates that more variation is expected
when using low reflectance endmembers.
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Figure 5. Absolute mean difference (AMD) between the 68-band
unmixing results and the Quickbird simulation unmixing
results for each endmember.
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Figure 6. Map of the absolute difference (AD) between Quickbird
simulati on unmixing results and the 68-band unmixing results over the
Copper Cliff mine tailings area in Sudbury.

The map shown in Figure 6 gives a spatial representation
of the absolute difference (AD) between the Quickbird
simulation unmixing results and the 68-band unmixing
results over the Copper Clff mine tailings area in
Sudbury. The brighter parts of the map show higher
differences and the darker parts show lower differences.
Most of the data are in the AD range of 0.00 to 0.05.

4. CONCLUSION AND DISCUSSION

The unmixing results obtained by varying the number of
bands produce absolute mean differences that do not
exceed 0.02 for 34-band, 17-band and 8-band sets. The
4-band dataset yields larger differences, up to 0.094.
However, Quickbird simulation indicates a difference of
0.016 is achievable if the bands are selected according to
physical spectral properties. The bandwidth simulation
results indicate that as bandwidth increases, the absolute
mean difference increases and the standard deviation of
the absolute mean difference decreases. The study shows
that similar unmixing results are obtained using cast

hyperspectral data and simulated broad-band high
resolution multispectral sensors.

However, several points must be borne in mind: the
limited spectral resolution of broad-band sensors make it
difficult to spectrally identify endmembers and to
spectrally separate subtle differences in endmembers. The
endmembers in this study are very spectrally different and
hence the second point was not a problem. To unmix a
scene with N endmembers requires N-1 bands. Therefore,
complicated scenes with many endmembers might require
more bands to perform spectral unmixing than provided by
forthcoming high spatial resolution sensors.
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mining. The surface mineralogy of exposed uranium tailings can be determined using hyperspectral
remote sensing which provides many contiguous narrow spectral bands that allows spectral discrimination
and identification of various minerals. The objective is to investigate the potential of hyperspectral remote
sensing for the identification of uranium mine tailings and distinguish them from other types of mine
tailings. More specifically to determine if uranium mine tailings include spectrally distinct mineral
compounds that could help distinguish them from mine tailings from other sources.

2. STUDY SITE DESCRIPTION

The Pronto uranium and copper mine tailings are located in the Elliot Lake area on the north shore of
Lake Huron, Ontario, Canada (Figure 1). The tailings are the waste produced from mining uranium from
a Precambrian quartz-conglomerate type deposit of detrital placer origin (Fogwill, 1981). Over 2 million
tons of uranium ore were processed at the Pronto mill between 1955 and 1960 producing an equivalent
amount of uranium tailings. The mill was then converted to process copper ore from a nearby mine and
generated an additional 2 million tons of copper tailings until the closure of the mine in 1970. During the
1955 - 1970 period, tailings from uranium and copper ore extraction were deposited on a 47 ha area
confined within a natural rock basin closed by waste rock dams (Rio Algom Limited, 1999).

ONTARIO

el Pronto
Mine

FIGURE 1. Location of the Pronto mine.

Figure 2a shows the map of the Pronto waste management area. The arrows show the surface
drainage that flows into the holding pond. A water treatment plant treats the incoming water with a
mixture of lime and barium chloride to reduce the acidity and remove the radium. The treated water is
then sent to a settling pond prior to being released into a stream that feeds Lake Huron. There is an area of
exposed uranium tailings and an area of copper tailings. The copper tailings overlay the uranium tailings
and helps to mitigate the radiation levels released by the tailings (Rio Algom Limited, 1999). The Pronto
site contains one of the rare instances in the Elliot Lake area in which uranium tailings are exposed at the
surface. Surprisingly, many of the uranium tailings are naturally revegetated, the remaining ones being
submerged under water for remediation purposes. Figure 2b shows a Probe-1 RGB composite of the
Pronto tailings management area. Some of the aforementioned features are identified in the image.

* Under contract to CCRS from MIR Télédétection inc., 110 rue de la Barre, Bur. 226, Longueuil, QC, J4K 1A3, Canada.
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FIGURE 2. (a) Map of the Pronto waste management area and (b} black and white image of
a Probe-1 colour composite (red: 662 nm, green:523 nm, blue:450 nm).

3. METHODOLOGY

All image processing and analyses were carried out using the Imaging Spectrometer Data Analysis
System (ISDAS) developed at the Canada Centre for Remote Sensing (Staenz et al., 1998).

3.1 AIRBORNE DATA ACQUISITION AND PROCESSING

Airborne hyperspectral Probe-1 data were acquired on July 8, 1999 over the Pronto mine. Table 1
shows the sensor configuration for the airborne survey. A total of 128 spectral bands were recorded
between 440 nm and 2500 nm with a nominal bandwidth ranging from 11 nm to 22 nm. Probe-1 has a
field-of-view of 60° and produces a 512-pixel wide image. It was flown at an altitude of 2139 m above
ground level which produced a pixel size of 5 m by 5 m at nadir. No aircraft motion correction was
required since the sensor was mounted on a three-axis gyro-stabilised platform which compensated for
aircraft motion

* Under contract to CCRS from MIR Télédétection inc., 110 rue de la Barre, Bur. 226, Longueuil, QC, J4K 1A3, Canada.



TABLE 1. Probe-1 sensor configuration.

Spectral coverage 440 nm - 2500 nm
Number of bands 128
Bandwidth at FWHM* 11 nm-22nhm
Sensor altitude above ground 2650 m
Ground resolution:

across frack >m

along track 5m

Field of view (FOV) 60°
Swath of image 512 pixels

* FWHM = Full Width at Half Maximum

Calibration

Dark current was first subtracted from the Probe-1 data. Spectroradiometric laboratory
measurements were used to transform the raw data from digital numbers (DN) to radiance using a
vicarious calibration method (Secker et al., 2001).

Atmospheric correction

An atmospheric correction was performed on the image data using a look-up table (LUT) approach
to transform the radiance data into reflectance (Staenz and Williams, 1997). Table 2 shows the model
input parameters used for the transformation. MODTRAN 3 radiative transfer code was used to calculate
the atmospheric transmission over the full spectral range of the sensor.

TABLE 2. MODTRAN3 model input parameters for the atmospheric
correction of the Probe-1 data.

Date 1999:07:08
GMT 14:07:30
Aircraft heading 134°
Sensor altitude (above sea fevel) 2.439 km
Terrain elevation (above sea level) 0.3 km
Solar zenith angle 47.6°
Solar azimuth angle 101.9°

Atmospheric model midlatitude summer
Aerosol model continental (rural)
Water vapour content 1.3 glem®
Ozone column (as per model) 0.319 cm-atm
CO , mixing ratio (as per model) 357.5 ppm
Horizontal visibility 50 km

* Under contract to CCRS from MIR Télédétection inc., 110 e de la Barre, Bur. 226, Longueuil, QC, J4K 1A3, Canada.




Spectral unmixing

Thirty endmembers were automatically extracted based on the iterative error analysis technique
implemented in ISDAS (Szeredi ef al., 2001). The endmembers were used to unmix the Probe-1 data
using a constrained linear technique (Shimabukuru and Smith, 1991; Boardman, 1995) which
decomposes the image spectra in terms of linear combinations of the endmembers. In the constrained
method, the image fractions are confined between 0 and 1 and sum to 1. The result of the unmixing
procedure is a set of fraction images that show the fractional abundance of the endmembers.

3.2LABORATORY REFLECTANCE MEASUREMENTS OF URANIUM STANDARDS

Spectral measurements were made of a number of compounds, minerals, and ore samples related to
uranium mining and processing. A GER3700™ portable spectrometer was used to carry out the
measurements in the laboratory. This spectrometer records wavelengths from 300 nm to 2500 nm with a 3
to 16 nm spectral resolution. A halogene lamp was used as the source of light. Reflectance was calculated
using the ratio of the target (sample) radiance to the radiance of a reference (Spectralon™) target (x 100).
Reflectance spectra were measured from laboratory standards samples of uranium ore, uranium-thorium
ore, uramum ftailings ore, yellowcake (U;Oy).

4. PRELIMINARY RESULTS

4.1 ENDMEMBER FRACTION IMAGES

Figures 3a and 3b show the endmember fraction images of the uranium and copper tailings. High
fractions are shown in white and zero fractions in black. Their associated endmember spectra are shown
in Figure 3¢ and 3d. Both endmember spectra exhibit the shape of an iron oxide mineral with the strong
iron absorption band in the 850 nm to 1000 nm range. This is no surprise since the uranium mined in the
Elliot Lake area was extracted from a highly pyritic geological environment. Figure 4 shows the spectrum
of such an iron oxide mineral (goethite) retrieved from the USGS (United States Geological Survey)
spectral library together with the two tailings endmember spectra.

Figure 5 shows the endmember fraction map of water loaded with suspended sediments. The holding
pond (untreated water), contains the highest fractions at the affluent of the two streams that drain the
waste management arca. High sediment load is shown in white and no sediment load m black. Prior to
being released to the environment, the water is treated with lime to reduce acidity and barium chloride to
remove radium, then sent to the settling pond where the chemical reactions occur which help to settle the
sediments to the bottom of the pond. The water exiting the scttling pond is free of suspended sediments
(dark = low fractions) which indicates the success of the water treatment.

* Under contract to CCRS from MIR Télédétection inc., 110 e de la Barre, Bur. 226, Longueuil, QC, J4K 1A3, Canada.
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FIGURE 3. Endmember fraction maps corresponding to the (a) uranium tailings and (b) the copper
tailings and their associated endmember spectra (c) and (d).
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on a laboratory spectrum of goethite from the USGS spectral library.
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the full 65-band casi as long as the bands are positioned with respect to physical spectral
properties. Such a result, especially for the broad-band simulations, was achieved mainly

because the endmembers are spectrally very distinct and do not show subtle differences.

RESUME

Cette étude démontre I'importance de la position, du nombre, ¢t de la largeur des bandes
spectrales sur les résultats de déconvolution spectrale des données de réflectance du
Compact Airborne Spectrographic Imager (casi). Les données ont été acquises dans le
visible et le proche infrarouge pour le site de rejets nuniers de la mine Copper Cliff prés
de Sudbury (Ontario, Canada). Afin d'étudier I'effet du nombre de bandes spectrales, les
données casi ont été réduites de fagon systématique de 65 433, 17, 8 et 4 bandes en
maintenant la largeur de bande initiale de 8,7 nm a mi-hauteur. Pour étudier I'effet de la
largeur des bandes, une série de données interpolées par une fonction cubique a été créée
a partir des spectres des données originales casi de 65 bandes. Une image de six bandes
spectrales pré-sélectionnées a été produite pour chaque largeur de bande a mi-hauteur
variant entre 8,5 nm et 76,5 nm avec un intervalle de 8,5 nm. Les données multispectrales
a haute résolution spatiale Tkonos 2 (comportant des fenétres spectrales plus larges et
moing nombreuses que casi) ont &té simulées afin d'¢tudier 1'effet combiné du nombre et
de la largeur de bande. Une déconvolution spectrale linéaire a été appliquée sur les
données a partir de la signature spectrale de 5 composantes ¢lémentaires : végétation,
chaux, rejets miniers oxydés, et deux types de surfaces d'eau. Les résultats montrent une
différence absolue moyenne allant jusqu'a 0,02 (écart-type: = 0.05) entre les fractions des
composantes élémentaires des données simulées et celles provenant de la série de
données originales casi de 65 bandes lorsque que les bandes spectrales sont sélectionnées
selon des propriétés physiques et spectrales. La différence absolue moyenne est beaucoup
plus élevée lorsque les bandes sont positionnées de fagon aléatoire. En général, la
déconvolution spectrale des données simulées produit des résultats semblables a ceux
obtenus avec la série de données originale casi de 65 bandes dans la mesure ou la
position des bandes spectrales est déterminée d’apres des propriétés physiques et

spectrales. De tels résultats, entre autre ceux de la simulation de bandes larges, sont



réalisables en grande partie parce que les composantes élémentaires ont des signatures

spectrales trés distinctes.

1. INTRODUCTION

Canadian liability for acid mine drainage is in the order of $2 billion to $5 billion
depending on the technique used to dispose of and treat the acidic waste (Feasby and
Jones, 1994). In the Sudbury area alone, Inco I.td. spends an annual $5 million to reclaim
property (Inco, 1998). Given these enormous costs, monitoring techniques are needed to
evaluate their efficiency for reclamation of mine tailings sites, ¢.g., revegetation
(Hossner, 1988). Recent work indicated that remote sensing, especially imaging
spectrometry, has the potential to play a significant role in this area (Ferrier, 1999; Shang
et al., 1999 ; Mueller et al., 1997, Farrand and Harsanyi, 1997 ; Swayze et al., 1996;
Singhroy, 1996). In previous studies, Lévesque et al. (1997 and 1999) demonstrated the
vegetation monitoring capability of the Compact Airborne Spectrographic Imager (casi)
over the Copper Cliff mine tailings area near Sudbury, Ontario, Canada. If long term
monitoring is required airborne surveys can become quite expensive. The question is
whether one can achieve similar results using Ikonos 2 and other forthcoming high spatial
resolution satellites such as Orbview3 and Quickbird (ASPRS, 1996 ; Space Imaging,
1999). Table 1 summarizes the basic instument charactersitics of these sensors. The
spatial resolution of these sensors is similar to that of the casi data acquired over the
Copper Cliff mine tailings site (2.5 m by 4.3 m). However, these sensors have fewer
spectral bands and their bands are wider than those of the cas/ visible-near infra-red

(VNIR) hyperspectral data sets used for this study.

This paper investigates the effect of varying bandwidth and number of bands on the
ability to monitor mine tailings revegetation over a site near Sudbury using a spectral
unmixing approach. In addition, the four Ikonos 2 bands and related bandwidths were
simulated in order to evaluate their potential monitoring capability. Since Orbview3 and
Quickbird have basically the same spectral configuration as Tkonos 2 the results obtained

for Ikonos 2 are assumed to be applicable to these sensors also. The casi data set used for






In the next pre-processing stage, surface reflectances were computed from calibrated (at-
sensor radiance) data. The procedure applied to the data uses a five dimensional look-up
table (LUT) approach with tunable breakpoints to provide additive and multiplicative
coefticients for removal of scattering and absorption effects (Staenz and Williams, 1997).
The LUT variables are: wavelength, pixel position, atmospheric water vapour, acrosol
optical depth, and terrain elevation. This procedure has the advantage of reducing
significantly the number of radiative transfer (RT) code runs thereby saving the time that

would be required to run such a code on a pixel-by-pixel basis.

For the LUT generation for the different data sets, the MODTRAN3 radiative transfer
code was run for the input parameters as listed in Table 3 for a low-level (5 %) and high-
level flat reflectance spectrum (60%). This produces a LUT for each reflectance level.
These LUTs were produced for five pixel locations equally spaced across the swath,
including nadir and swath edges, and for single values of aerosol optical depth (horizontal
visibility), terrain elevation, and water vapour contents. The final step involved in the
LUT generation is the convolution of the model output radiances with the relative
spectral response profiles of the sensor. casi’s response profiles were approximated by a

trapezoidal-shaped line spread function.

For the retrieval of the surface reflectance, the LUTs were adjusted only for the pixel
position using a bi-linear interpolation routine (Press et al., 1992) since single values for
the other LUT parameters were used for the entire cube. The water vapour content was
determined by applying the atmospheric correction process iteratively to sample scene
spectra, while adjusting this atmospheric parameter, and selecting the value which best
removed the water vapour absorption features on average. The surface reflectance of each
pixel could then be computed as described in Staenz and Williams (1997). Sample

reflectance spectra are displayed in Figure 2.

An assessment of the retrieved spectra revealed only minor irregularities in the

reflectance data that may have originated in the sensor, or that may have resulted from



the approximations made in the atmospheric modelling and the selection of parameters.

These minor band-to-band errors were not corrected.

3.2 Band Simulations

The number of bands was reduced by skipping every other band of the 65-band data cube
resulting in a 33-band data set. This procedure was repeated to produce data sets
containing 17, 8, and 4 bands, respectively. This systematic way to pick the bands,
especially concerning the data sets with 8 and 4 bands (Table 4), is not ideal from a
physical point-of-view. The bands are not properly positioned for the application focused
on in this study. In order to overcome these difficulties, six casi bands were selected
based on the spectral characteristics of vegetation for inclusion in the analysis (Staenz,
1996). This data is referred to in the paper as the geobotany data set. Band positions of
this data set are listed in Table 4.

In order to test the effect of varying the bandwidth on the unmixing results, the original
casi data were fit with a cubic spline and interpolated to a specific wavelength grid (Press
et al., 1992). The grid size is determined by dividing the spectral response profile of the
bands to be simulated into 20 intervals. This approach is appropriate since subtle spectral
changes do not occur for the target type considered in this study. The interpolated data is
assumed to be the underlying data set for the subsequent simulations. The interpolated
values were then convolved to Gaussian spectral response profiles with full width at half
maximum (FWHM) bandwidths, ranging from 8.5 nm to 76.5 nm in increments of 8.5
nm. The profiles were centred at the six band positions of the geobotany data set as listed

in Table 4.

In order to consider a more realistic case with a few well selected broad bands, the
spectral band characteristics of the four-band instrument onboard Ikonos 2 were
simulated with the same technique as described in the previous paragraph from the casi

65-band data sets using Gaussian spectral response profiles. The centre wavelengths and



associated bandwidths are summarized in Table 4. The fourth band centred at 830 nm
with a bandwidth of 140 nm FWHM could not be simulated properly with casi since the
65-band data set with an upper wavelength limit of 913 nm does not entirely cover the
right tail of the response profile. Therefore, a narrower bandwidth of 83 nm FWHM was
used to approximate the fourth Tkonos band. To ensure that our results are compatible
with real Ikonos 2 data, the off nadir viewing direction should be limited to less that 15°

(casi data set = + 18°) when acquiring the data.

3.3 Spectral Unmixing

Constrained linear spectral unmixing was performed on all the simulated casi data cubes

using an algorithm implemented in ISDAS (Szeredi et al., 1999 ; Boardman, 1989 and

1990). The method decomposes the image spectra S in terms of endmember spectra gi ;

§=(Z]‘;§l}+r, (1)

N
where 0< f, <1, Z S =1 and [, 1s the fraction of endmember i contributing to the image

=1

spectrum S , N 1s the total number of endmembers, and ;is the error term. The result of
the unmixing procedure is a set of N fraction images that show the fractional abundance
of the endmembers. Endmember spectra were selected from the 65-band image cube
using the first three principal components (PCs) which account for 77%, 21% and 1% of
the variability, respectively. Endmembers are the purest pixel spectra in the data set and
are often located at the extremities of the scatter plot which results when the spectral data
are plotted in PC space. Five endmembers were selected from the 65-band data as shown
in Figure 3. These endmembers were identified as lime, green vegetation, oxidized
tailings, water 1, and water 2 using field reference information in combination with

ground-based spectral measurements collected with a GER3700 field spectroradiometer.



Water 2 is distinct from water 1 because of it’s high content of sewage, tailings, and
lime. The spectra of these endmembers are displayed in Figure 4. According to the PC
scatter plots, the same five endmembers were identified for the different simulated data
cubes. The endmembers for the different simulations were then generated from the
endmembers of the 65-band data the same way as the simulated data sets discussed in the

previous section.

3.4 Assessment of Results

The fraction images retrieved with the spectral unmixing procedure from the simulated
data sets were then compared to those extracted from the 65-band data. The absolute
values of the differences between the fractions found using the 65-band data and that
found using the sub sampled multispectral data sets, were computed on a pixel-by-pixel
basis for each endmember. Subsequently, the mean and standard deviation of these

absolute differences were calculated.

4. RESULTS

As an example of the output of the constrained unmixing, the fraction images of
vegetation, lime, and oxidized tailings retrieved from the 65-band data cube are shown in
Figure 5 together with a colour composite providing an overview of the study site. The
upper part of Figure 5a is the inactive tailings where most of the revegetation work is
being done. Some of the typical areas of the tailings are identified in the colour
composite and depicted in the adjacent photographs. The three endmembers shown are
those most important for tailings rehabilitation purposes. The fractions vary between 0
and 1 with blue representing a low value and red a high value. The lower part of Figure

5a is an active tailings area where fresh tailings are being deposited.



An examination of the error images associated with spectral unmixing (Eq.1) of the 65-
band data revealed no significant errors and hence, one can be confident all major
endmembers have been found and the endmembers span the data space. In addition, the
unmixing results have been validated in the field as reported by Staenz et al. (1999).
Therefore, the fraction images derived from this data cube represent an ideal reference for

this study.

4.1 Band Reduction

Figure 6 shows the effect of decreasing the number of casi bands on the spectral
unmixing results. The mean absolute differences remain under 0.02 (standard

deviation: = 0.03) for all the endmembers using 33, 17, and 8 bands. When considering
four bands the overall mean absolute difference increases but remains below 0.04

(% 0.05) for green vegetation and lime and below 0.05 (£ 0.06) for oxidized tailings,
respectively. These errors decrease to the same level as for the 33, 17, and 8 band cases
when the bands are selected according to physical spectral properties as is the case for the
6-band geobotany data set. The two water endmembers consistently display a higher

mean absolute difference than the other endmembers. This can be understood from Eq.

1. The water endmember spectra, S and S_ . are relatively dark, hence the spectral

wl w2 ?

magnitudes ‘Swl‘ and ‘ng‘ are small compared to the other endmembers. Due to this fact

the fractions f  and f , can vary by a relatively large amount without changing

significantly the sum spectrum in Eq. 1. The constrained unmixing takes advantage of

this fact and hence the fractions f,, and f , vary more than the fractions of the other

endmembers.



4.2 Varying Bandwidth

The comparison between the fractions retrieved from the 65-band data and the data sets
of different bandwidth simulated from the geobotany image cube revealed mean absolute
differences below 0.008 (% 0.021) for the vegetation, lime, and oxidized tailings
endmembers. The maximum mean absolute difference values occured at the 8.5 nm
bandwidth. A similar trend was found for the endmembers water 1 and water 2 but with
a higher mean absolute difference of up to 0.021 (£ 0.051). The standard deviation of the
absolute difference decreases for all endmembers as the bandwidth increases since the
local variations (in wavelength) in the spectrum are smoothed over. This results in less
fractional variations and a smaller standard deviation. As an example, Figure 7 shows the
mean and standard deviation of the absolute difference for the green vegetation and water

1 endmembers.

4.3 Tkonos Simulation

In Figure 8 the mean absolute difference is shown for each endmember for the Tkonos 2
simulation unmixing results against the 65-band unmixing results. Unlike for the four-
band case used in Figure 6, the four Ikonos 2 bands display lower mean absolute
differences. This was expected since the four Ikonos bands are better positioned to
enhance differences between spectra. The mean absolute difference for all endmembers
do not exceed 0.014 (£ 0.07). As pointed out before, the two water endmembers,
followed by the oxidized tailings, the green vegetation and the lime endmembers, show
an inverse relationship between their spectral reflectance magnitude and their mean
absolute difference. Similarly, the standard deviation of the mean absolute difference is
related to the magnitude of the endmember spectra which indicates that more variation is

expected when using low reflectance endmembers such as water 1 and water 2.
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As an example, the spatial representation of the Ikonos simulation analysis is presented in
Figure 9 for the green vegetation endmember. Figures 9a and b depict the fractions
retrieved from the 65-band and the simulated Tkonos data , respectively. The absolute
difference map of these fraction images is shown in Figure 9¢. The bluish portion of the
difference map indicates lower differences while the red parts show higher differences.

98.8 % of the data are in the absolute difference range of 0.00 to 0.05.

5. DISCUSSION

Although the results indicate generally a reasonable agreement between the endmember
fraction images retrieved from the simulated data sets versus the 65-band data, several

points have to be considered.

The separation and identification of endmembers becomes more difficult if one moves
from hyperspectral data towards multispectral broad-band data. The limited spectral
resolution combined with a limited number of bands makes it difficult to separate
spectrally subtle differences in endmember spectra and, subsequently, can be expected to
lead generally to poor unmixing results. However, since the endmembers in this study
are spectrally very different, the unmixing of the simulated broad-band Ikonos 2 data
produced fractions similar to those resulting from unmixing of the casi 65-band data.
This result is consistent with the results of the bandwidth simulation analysis using well-
defined band positions for the application under consideration. However, the unmixing
results are strongly affected if the bands are not positioned properly for a given

application as shown in Figure 6 with the band reduction analysis.
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The endmembers for a specific simulated data set were computed the same way as the
image data set itself, e.g., for the Ikonos simulation the endmember spectra of the 65-
band data were convolved to the Ikonos four-band characteristics. In order to evaluate the
impact of this approach on the fraction images, the endmembers were also extracted from
the simulated data sets themselves. The latter procedure is usually the preferred approach
since scaling issues between image data and endmembers of ground (library) spectra can
be avoided. However, if spectra from a library are used as endmembers, then the band
characteristics of the sensor under consideration have to be simulated from those spectra.
No significant differences were found between fractions retrieved with endmembers

selected from the simulated data sets directly and via the 65-band data.

The unmixing procedure requires N—1 bands to unmix N endmembers. With five
endmembers retrieved from the data sets under consideration, the number of bands was
limited to four in this study. Complicated scenes containing more endmembers might
need more bands to perform unmixing than provided by the forthcoming high spatial
resolution sensors such as onboard Tkonos 2. Accordingly, the unmixing procedure
cannot be applied in such cases using this type of sensor. Other methods such as
traditional classification approaches (e.g. maximum likelihood) could be used, but they

are not able to provide the same detailed target information as spectral unmixing.

6. CONCLUSIONS

The influence of spectral band characteristics (number of bands, bandwidth) on spectral
unmixing have been investigated for monitoring the rehabilitation status of mine tailings.
For this purpose, different band sets, including the four-band multispectral sensor
onboard Ikonos 2, have been simulated from hyperspectral VNIR 63-band casi surface
reflectance data. The resulting endmember fractions for green vegetation, lime, oxidized
tailings, water 1, and water 2, retrieved from the simulated data sets, have been compared

against those obtained from the 65-band data.
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The unmixing results obtained for the different endmembers by decreasing the number of
bands produces mean absolute differences that do not exceed 0.02 (standard deviation:

+ 0.03) for 33-band, 17-band and 8-band data sets. The 4-band data set yields larger
differences, up to 0.14 (£ 0.22). However, Ikonos 2 simulation indicates that a mean
absolute difference of 0.014 is achievable if the bands are selected according to physical
spectral properties. The largest mean absolute differences between the fraction images
occur for water 1 and water 2. This is also true for the bandwidth simulation study. It
revealed mean absolute differences of a magnitude similar to those resulting from the
band reduction study with the exception of the 4-band simulation. In this case, the mean
absolute difference is significantly lower for the bandwidth cases, about 7 to 10 times
depending on the endmember. Furthermore, the bandwidth simulation results indicate
that as bandwidth increases, the standard deviation of the mean absolute difference

decreases.

The study shows that especially for the non-water endmembers, which are most
important for revegetation monitoring, similar unmixing results were obtained using the
simulated data as retrieved with casi hyperspectral data as long as the bands are
positioned according to physical spectral properties. This is even true for the four broad-
band Ikonos 2 simulation. However, for sensors with similar band characteristics as
Ikonos 2, the results cannot be readily transferred to more complicated scenes and hence,
containing more endmembers than the scene used in this study. This is due to the
required minimum number of bands, N-1, for unmixing N endmembers. It is also more
difficult to identify endmembers, especially when subtle differences occur, if only a few
spectral bands are available. Nevertheless, the study demonstrated that high spatial broad-
band sensors such as Tkonos 2 and Quickbird have the potential for monitoring mine

tailings rehabilitation using spectral unmixing.
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Table 1 : Spectral band configuration and spatial resolution for the Quickbird,
Orbview3 and Ikonos sensors.

Sensor Ikonos2 Quickbird Orbview3
Company Space Imaging Earthwatch Orbital Sciences
Spectral 450 - 520 450 - 5320 450 - 520
bands 520 - 600 520 - 600 520 - 600
(nm) 630 - 690 630 - 690 625 - 695
760 - 900 760 - 890 760 - 900
Spatial
resolution 4m 4m 4m

" as of September 1999

Table 2: casi sensor configurations.

Spectral coverage 407-944 nm
Number of bands 72
Spectral sampling interval 7.6 nm
Bandwidth at FWHM* 8.7 nm
Sensor altitude above ground 1905 m
Ground resolution: across track 25m
along track 4.3 m
Swath 406 pixels

* FWHM: Full Width at Half Maximum
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Table 3:

Input parameters for MODTRAN3 code runs.

Atmosgpheric model

Mid-latitude Summer

Aerosol model Continental
Date of overflight August 24, 1996
Solar zenith angle 31.5°
Solar azimuth angle 176°
Sensor zenith angle variable
Sensor azimuth angle variable
Terrain elevation 0.3 km
Sensor altitude above sea level 2.21 km
Water vapour content 2.35 g/cm2

Ozone column

as per model

CO, mixing ratio

as per model

Horizontal visibility

50 km

Table 4: Spectral characteristics of the simulated data sets.

Data Set Centre Wavelength (mm) Bandwidth (nm)
at FWHM
8-band 458.7, 518.2, 578.2, 87
638.6, 699.3, 760.28,
821.4, 882.7
4-band 503.2, 608.3, 714.5, 821.4 87
Geobotany (6 bands) 480.9, 548.1, 608.3, 8.5t0 76.5
676.5, 745.0, 829.1 in increments of 8.5
Ikonos 2 485, 560, 660, 830 80, 80, 60, 140
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2.0 METHODOLOGY
2.1 STUDY SITE

The Inco Copper CIiff tailings impoundment area as outlined in Figure 1 is divided into nine main
tailings storage areas (Puro et al. 1995). The tailings represent different stages of activity/reclamation
ranging from active areas, where new tailings are being deposited (R1, R2, R3, R4), to inactive arcas
with well established 30 year old vegetation regrowth (CD). Intermediate between these are inactive
arcas where revegetation is under way. In Figure 1, areas labelled P and Q were chosen for this study
because of their earlier stage of reclamation. Although some trees are present in these areas, they are
located on rock outcrops and are not part of the tailings revegetation process. Figure 2 shows a casi
image (band at 676 nm) containing the sample plots (sub-scenes) that were selected from each tailings
arca to avoid forested outcrops and to limit the study area to regions where active revegetation work is
being done by Inco.

Plot P1 represents an area of older grass growth as compared to plots P2 and Q. It is also located on a
hill (from higher to lower part in the image plot). Plot P2 includes an area which was actively
revegetated during the last two years (mainly north of the creek) and an area where tailings are
predominant (south of the creek). Area Q is dominated by tailings where revegetation work (liming,
ploughing, seeding) has been done during the last two years. In all three plots some water, as part of a
stream or a pond, was deliberately included to show areas where no changes in vegetation has occurred
over the period August 1996 to August 1998 between image acquisitions.

2.2 IMAGE DATA

High spatial and spectral resolution casi radiance data were acquired on August 19, 1996 and August 24
1998 in 72 contiguous, 8.7 nm wide spectral bands covering a wavelength range from 407 nm to 944
nm. Pixel size is roughly 2.5 m in the across-track direction and 4 m in the along-track direction. Only
wavelengths between 450 nm and 900 nm were used because of the drop-off of the responsivity of the
silicon detector at both ends of the casi spectrum.

2.3 PROCESSING OF IMAGE DATA

A roll correction was applied to both datasets using the navigation data to remove the most significant
aircraft motion from the imagery. Surface reflectance was retrieved using a look-up table (LUT)
approach implemented in ISDAS (Staecnz and Williams, 1997, Staenz et al., 1998a). After atmospheric
correction, an ISDAS algorithm based on spectrally flat targets was used to remove any remaining
systematic atmospheric or sensor effects in the data (Staenz et al., 1998b).

2.4 SPECTRAL UNMIXING

Constrained linear spectral unmixing was performed on both 1996 and 1998 casi datasets using an
algorithm implemented in ISDAS (Szeredi et al., 1998; Boardman, 1989 and 1990). In lincar unmixing,
the spectrum from ecach pixel in the data cube is decomposed into a linear combination of
“endmembers™ spectra which represent in this case the spectra of the purest pixels in the scene.. The
first step in the process involves a principal component decomposition; only the first three principal



components (PC) were retained, which respectively account for 77%, 21%, and 1% of the variability in
the 1996 dataset and 85%, 12% and 1% of the variability in the 1998 dataset. Figure 3 shows the scatter
plots in the three PC dimensions for both 1996 and 1998 data. The endmember spectra are those
corresponding to the extremities of these scatter plots; these are selected manually and their locations
are indicated in Figure 3. The same endmembers were identified for both years: lime, vegetation,
oxidized tailings, and two types of water. The spectra of all endmembers are displayed in Figure 4. Each
data cube was unmixed in terms of the five identified endmember spectra. This resulted in a “fraction”
image for cach endmember. In cach fraction image the pixel values comrespond to the contribution of
this endmember to the total reflectance of the cass data.

2.5 COMPARISON OF 1996 AND 1998 RESULTS

The fraction images of the endmember “vegetation” from both years were overlayed to within a RMS
error of less than +2 pixels in both spatial dimensions. This was achieved by performing an image to
image registration using a third-order polynomial in combination with ground control points. A
procedure which provides more accurate results as performed by Gibson (1994) was not possible
because a full set of navigation data was not collected during the casi data acquisition. The three plots
(P1, P2, Q. Figure 2) were reimaged in Figure 5 as differences (1998-1996).

3.0 RESULTS AND DISCUSSIONS

The first column in Figure 5 shows the maps of the absolute difference between vegetation image
fractions derived from the 1996 and 1998 casi plots P1, P2, and Q, specifically the vegetation fraction of
1998 minus the vegetation fraction of 1996. The second and third columns show the scatter plots of both
years for the same plots and their histograms.

On the difference maps, light tones represent positive differences between fractions of 1998 and
fractions of 1996 and indicate arcas where vegetation density has increased during the two-year period.
Dark tones indicate a decrease in vegetation density. Middle tone (zero difference) shows vegetation
areas which have not changed between the two image dates. As expected, the water, which contains no
vegetation, appears grey corresponding to zero difference. The creek is hardly distinguishable in the
difference map of the plot Q since there has been little change along its boundaries over this time
period.

The difference map of plot P1 shows an increase of vegetation density in the lower part of the hill while
the upper part shows a decrease. This could indicate a drainage effect. Plot P2 exhibits a general
vegetation increase in the upper right quarter where revegetation work has been done over the last two
years. The lower part, which is composed of tailings shows a medium tone indicating small changes
between 1996 and 1998, Various patterns resulting from revegetation work are apparent in the
difference map of plot Q; in particular, fine striations on the left side of the image are caused by
ploughing performed in 1996. The brighter areas in the Q map result from more recent seeding. The
dark area in the upper left comer was seeded in 1996 and ploughed over in 1998 so that the fraction
difference is negative on the rows where grass was growing in 1996.

In all three scatter plots it appears that there are more points above the diagonal (equal fractions line)
than below it. This indicates qualitatively an overall increase of vegetation between 1996 and 1998. A
more quantitative result can be obtained from the vegetation fraction histograms. For area P1, the 1996



histogram peaks at a fraction of 0.20 and goes to zero at fraction 0.30; in contrast, the 1998 histogram
peaks at fraction 0.22 and vanishes at 0.45. For area P2, both have a primary peak at approximately
0.10, the histogram for 1998 has a secondary peak at 0.20 and vanishes at about 0.31, while that for
1996 decreases gradually to zero at 0.35. Those pixels exhibiting the highest vegetation fractions in
1996 appear to have been destroyed by subsequent activities. Area QQ has a significant proportion of
pixels in 1998 which have fractions above the .30 cutoff of the 1996 data, indicating a strong
improvement in revegetation.

Because of a RMS misregistration emror of +2 pixels, it was not possible to extract quantitatively
accurate results on a pixel-by-pixel basis. This misregistration which represents 5 to 8 m on the ground
is sufficient to cause significant errors in the comparison of the 1996 and 1998 data, especially in
regions which are not homogenous. However, the analysis confirms that vegetation cover has increased
from 1996 to 1998.

4.0 CONCLUSION AND RECOMMENDATIONS

This study has demonstrated the feasibility of the technique used to achieve temporal monitoring of
vegetation regrowth over reclaimed mine tailings sites. The results indicate that advances in reclamation
of the selected sites have been made over the period between August 1996 and August 1998. If it is
desirable to have quantitative vegetation regrowth results on a pixel-to-pixel basis, then accurate aircraft
track and attitude data have to be obtained to be able to overlay image data within sub-pixel accuracy.
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Abstract

Sulphide-rich tailings cause acid mine drainage (AMD) when they are in contact with oxygen and water.
AMD can contaminate surface and ground water, which in turn can degrade the quality of the
environment. Knowledge of the progress of oxidation and also the spatial distribution of tailings
materials are of considerable importance when developing programs fo provide effective control of
tailings sites. In this paper, the potential of Compact Airborne Spectrographic Imager (casy) data for
providing information on variations in the axidation of lailings is investigated.

Spectral-mode casi data were acquired on August 19, 1998 in 72 bands covering the wavelength range
of 400 nm to 950 nm. Twenty-one tailings samples were collected concurrently with the casi overflight.
Reflectance was measured at all the sample locations using a GER 3700 spectrometer. Sample spectra
from the GER were matched with the minerals from the USGS spectral library. Spectral matching
revealed that the most likely minerals on this site are pyrite, pyrrhotite, jarosite, and goethite. Image
spectra extracted from the casi data over the same sample locations were also matched to the USGS
spectral library. Similar results were found in spite of the limited spectral coverage of the casi Spectral
unmixing of a test site within the casi imagery demonstrated the potential of this instrument to provide
information on separating the zomes of varying oxidation in the tailings. However, no direct
relationships were found between the oxidation phases and the age of the tailings.

Introduction

surface-water contamination (Ash et al., 1951,
Nordstorm and Apers, 1999).

Most mine tailings contain a considerable amount
of reactive sulphides which, when exposed to
oxygen and water, will result in breakdown and

oxidiation of the sulfide minerals that eventually —The occurrence of AMD has been identificd as the

lead to acid mine drainage (AMD) (Pearson ef al.,
1997). AMD typically has pH values in the range
of 2-4 and high concentrations of metals and
dissolved salts which can cause ground- and

largest environmental problem facing the Canadian
mining industry. There is a clear need for
developing methodologies for the repetitive, long-
term monitoring of mine-tailing sites to ensure that






tailings of wvarious mineral compositions and
oxidation stages. Locations of the sample points
are shown in Figure 2. Each sample was gathered
from the top of the tailings surface. Reflectances
of the tailings samples were measured in the
laboratory using a GER 3700 spectroradiometer.
The measured reflectance covers 400 nm - 2500
nm of the electromagnetic spectrum.

Figure 2. Locations of the tailings samples

Preprocessing of the casi data involves three steps:
noise removal, atmospheric correction and spectral
post-processing. These preprocessing steps will
ensure the later extraction of clean endmember
spectra which will subsequently lead to better
unmixing results.

Noise Removal: This step was carried out in
principal component (PC) feature space using the
unstriping module implemented in the Imaging
Spectrometer Data Amnalysis System (ISDAS:
Staenz et al., 1998). Initially, a PC transformation
was performed on the original casi radiance data.
By doing this, the striping (non-periodic banding
noise) and random noise inherent in the original
radiance data were enhanced and separated from
the signal. The first 6 PC features are of good
quality; therefore, they were excluded from this
process. The unstripping procedure adjusts the
mean of the stripes by applying a gain to that stripe
to remove the striping. This is achieved by

initially plotting the mean of each line for the
remaining PC features against the line mumber. A
triangular smoothing was then applied to the mean
curve to remove the spikes in the spatial domain.
This enabled the computation of a correction factor
(gain) for each line to adjust the original mean
values to the smoothed ones. Random sensor noise
was eliminated by passing a 3 by 3 average filter
through the data. The noise-removed data cube

was then inverse-transformed back to its original
band form. Figure 3 shows the effect of noise
removal from the casi data.

Figure 3. Principal compoment feautre 9 of casi
radiance data of the test site a) origingl, b) unstriped,
and ¢) spatial averaged

Reflectance Retrieval: The noise-removed casi
radiance data were converted to reflectance using
the surface reflectance retrieval procedure in
ISDAS. This procedure, developed by Staenz and
Williams (1997), is based on a look-up table
(LUT) approach to remove atmospheric effects. It
considers  the wavelength, pixel position,
atmospheric water vapour, aerosol optical depth,
and terrain Tt
elevation for the [+ oxidized ﬂ;;'
generation of the [, "“:"'h Tailings- —|
LUTs. The Retention
MODTRAN3 ond
radiative transfer
code was used to
create the LUTs.
Figure 4 shows a

Vegetation
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reflectance ] )

image of the test Figure 4. Sw_‘?-scene of the casi
it reflectance image (band 35

HES: centred at 661 nm)

Methods

The study is intended to investigate the potential
of casi data for mapping varations in tailings






Visual examination of the endmember spectra of
AMD (em10) and water (em2) in Figure 5 suggests
that the intermediate endmember spectra (em5 and
8) are not a simple combination of the outer spectra
(em2 and 10). For instance, the em8 spectrum has
an apparent broad absorption feature near 730 nm
and the reflectance rises again near 800 nm. This
supports the hypothesis that these fraction maps
reflect the sequential generation of different mineral
species.

Spectral Matching: Spectral matching of eml0
(oxadized tailings) using both spectral angle and
correlation measures revealed that the best matching
mineral is goethite, with a spectral angle of 0.075
and a correlation of 0.997.  Generally it is
considered to be a good match when the spectral
angle is smaller than 0.1 or the correlation is greater
than 0.9. Goethite is relatively stable and suggests a
moderate acid environment. Em5 is also best
matched with goethite but with a smaller correlation
(0.982) and a larger spectral angle (0.112). The
variations between em10 and em5 could occur for
three reasons. First, it could imply the emergence of
another mineral. Second, it could be caused by
different grain sizes in the sediments. When the
stream reaches the pond, the velocity of the flow
slows down which promotes the deposition of
sediments with larger grain size. Third, water
attenuation could also play an important role.
However, no clear explanation in the existing
literature has indicated the effect of water in
reflectance of a specific mixture as such. The
gpectrum of em8 does not match well with any
mineral in the spectral library. This could be
because em8 is a mixture of two or more minerals
with no one mineral occurring in a dominant
proportion. Because spectra in the spectral library
are derived from pure samples, no match can be
found. Overall, this experiment revealed the
potential of casi to provide information on mine
tailing extent and permit separation of tailings
with varying composition and oxidation levels.

Ground Measuwrements: Spectral matching results
of the 21 GER spectra of the tailings samples are
shown in Table 1. Candidate minerals were
accepted if the matching met two criteria: the
spectral angle is smaller than 0.1 and the
correlation is greater than 0.9. Since the spectra
from the USGS spectral library are derived from

pure mineral samples, a good match can only be
achieved when a single mineral dominates the
sample. If two or more minerals with equal or
similar proportions exist in one sample, the
spectrum of the sample will be the combined
effects of all the contributing minerals. The
resulting spectrum may not match with any of the
minerals in the library. In the worst case, the
mixed spectrum may produce a match with a
known spectrum for a mineral that is not relevant
to the study area.

Table 1. Candidate Minerals for the Tailings Samples

Derived from Spectral Matching with the TUSGS
Spectral Library.
Tailing Candidate Spectral | Correlation
Sample # Minerals Angle

1 phlogopite 0.078 0.989

2 goethite 0.112 0.989

3 andradite 0.067 0.985
andisine 0.070 0.967

4 pyrrhotite 0.087 0.960
andradite 0.089 0.956

5 pyrite 0.037 0.987

6 jarosite 0.133 0.959

7 jarosite 0.072 0.985

8 no match 0.07 0.949

9 andradite 0.085 0.982
jarosite 0.010 0.979

10 andradite 0.049 0.993
corrensite 0.085 0.987

1la  |jarosite 0.08 0.982
11b  |jarosite 0.057 0.986
pyrrhotite 0.096 0.985

12 Jjarosite 0.106 0.968
13 phlogopite 0.081 0.970
14 prochlorite 0.049 0.986
amphibole 0.049 0.984

15 andradite 0.089 0.978
jarosite 0.092 0.973

16 jarosite 0.051 0.989
17 pyrrhotite 0.063 0.987
18 jarosite 0.056 0.987
pyrrhotite 0.094 0.985

19 jarosite 0.072 0.980
andradite 0.093 0.972

20 pyrrhotite 0.054 0.991
andradite 0.064 0.981

jarosite 0.072 0.991







It can be seen that differences exist between the
sample spectra and the library spectra, even for the
best-matched spectral pairs shown in Figure 7.
This could be caused by the real difference
between the samples and the library minerals. As
mentioned earlier, the library spectra were derived
from pure mineral samples. In contrast, the tailing
samples are more likely mixtures of a variety of
minerals. When the proportions of the minor
minerals reach a certain level, the spectral shape of
the sample will alter and start to resemble the
absorption features of the minor minerals.

Spectral matching of the casi image spectra
revealed mineral results similar to the laboratory-
acquired GER spectra. Sample 4 is also best
matched with pyrrhotite. Samples 7, 11a, 11b, and
20 also show the same results as the GER.  This
suggests that casi data have the potential for
providing information on variations of the
oxidation of tailings. As an example, two spectral
matching pairs of casi spectra are shown in Figure
8.
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Figure 8 Selected casi spectva and the corresponding
matching spectra from the USGS spectral library.

Given the faudy good alignment between the
spectral matching results of the same tailing samples
from the GER and casi, there are some
disagreements. This is due to three causes. First,
some subtle vet vital absorption features may exist
only in the shortwave infrared region of the
spectrum which casi does not cover. Second, the
spectrum of a single pixel represents the averaged
information of a broad area, approximately 4 m x 4
m. However, the GER samples very small areas, for
this study 20 cm®. Therefore inherent differences
may exist between the tailings being measured.
Third, co-location of the sample sites can also
contribute to the disagreement. Even though the
image spectra were picked visually from the casi
imagery at the same locations as where the tailing
samples, the visual judgement could be off by
several pixels.

Conclusions

This study has demonstrated that casi data can be
used to provide information on separating the
oxidation zonations of the tailings. Spectral
matching revealed that the most likely existing
minerals on this tailings site are pyrite pyrrhotite,
jarosite, and goethite. Despite of casi’s limited
spectral coverage, similar results were found as
from the GER spectral matching. Unfortunately,
no direct relationships were found between the
oxidation phases and the age of the tailings. A
more detailed study will be performed in the future
on the entire tailings site. Hopefully, it will reveal
information on the spatial distribution of oxidized
minerals at various phases to provide a better
understanding of the evolution of tailings over
time.
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3.0 DATA ACQUISITION AND PREPROCESSING

High spatial and spectral resolution casi data were acquired in spectral mode over the study area
at 14:45 p.m. on August 19, 1998. The sky condition was clear, and the aircraft was flying at 2100
m above sea level (approximately 1800 m above the ground) heading 130 degrees from north. The
data cover the visible and near-infrared regions of the electromagnetic spectrum, from 407 to 944
nm, in 72 contiguous bands. The bandwidth at FWHM (full width at half maximum) is 10 nm with a
spectral sampling interval of 10 nm. The spatial resolution is 4 m by 4 m, resulting in a swath width
of 1.6 km (406 pixels).

Image preprocessing was performed prior to image analysis to convert the casi radiance data to
reflectance data. The preprocessing steps include roll correction, reflectance retrieval, and post-
processing of the data in the spectral domain. In the first step, the casi data were corrected for
aircraft roll effects by calculating lateral pixel shifts for each line using the navigation data.
However, the casi data were not corrected for pitch and yaw due to the lack of navigation data. The
casi radiance data were then converted to reflectance data using the Imaging Spectrometer Data
Analysis System’s (ISDAS) surface reflectance retrieval procedure (Staenz ef al, 1998). This
procedure, developed by Staenz and Williams (1997), is based on a look-up table (LUT) approach to
remove atmospheric effects from the casi data. It takes into account the wavelength, pixel position,
atmospheric water vapour, acrosol optical depth, and terrain elevation for the generation of the LUT.
MODTRANS radiative transfer (RT) code was used to create the LUT. The parameters used to run
the MODTRAN3 RT code are listed in Table 1.

Table 1. Input Parameters for the MODTRAN3 Run

Parameters Input

Standard atmospheric model Mid-latitude summer
Aerosol model Continental (rural)
Date of overflight August 19, 1998
Solar zenith angle 50.6°

Solar azimuth angle 116.9°

Sensor zenith angle Variable

Sensor azimuth angle Variable

Sensor altitude above sea level 2000 m

Platform heading 130°

Terrain elevation 300 m
Water-vapour content 1.2 glem’
Horizontal visibility 50 km

Post-processing was then performed on the retrieved reflectance data using spectrally flat
targets to remove artifacts due to calibration and atmospheric modeling (Stacnz ef a/., 1998).
Subscenes from two adjacent flightlines (6 and 7) of the casi surface reflectance images are shown in
Figure 2. The areas labeled will be reviewed in detail in Section 5.0 Results and Discussion.
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Figure 2. casi Reflectance Images of the Study
Site (band 35 centered at wavelength 661 nm)

4.0 METHODS

The study is intended to investigate the
potential of cass data for detecting AMD. This
issue is addressed by comparing the fraction
maps with the ground survey results.

Spectral unmixing was performed on the
sub-scenes (flightlines 6 and 7) of the casi
reflectance data in ISDAS. Both constrained
and unconstrained linear-unmixing algorithms
were applied. Linear unmixing is based on the
assumption that the reflectance of a given target
is the additive combination of the reflectance of
each of the target components (endmembers)
(Mustard and Pieters, 1987; Ben-Dor and Kruse
1995; Tompkins et al, 1997). The unconstrained
unmixing is abundance-free, and it can take on
any value. Therefore, it represents the relative
abundance of endmembers. The constrained
unmixing provides the absolute abundance

(Boardman, 1990).

Five endmembers were chosen for
unmixing: waterl, water2, oxidized tailings,
lime, and vegetation. These endmember spectra
were selected from the casi reflectance data. A
principal component transformation was then
conducted on all 72 bands of the casi reflectance
data. The first three principal components (PCs)
account for 98.8%6 of the total scene variance.
These three PCs were used for selecting the
endmembers. Endmembers are located at the
extremities of the clouds of scatterplots using
two of the PCs (Boardman, 1995; Lévesque et
al., 1999).

The locations of the five endmembers are
shown in Figure 3. The spectra of the
corresponding endmembers extracted from the
casi data are shown in Figure 4.









6.0 CONCLUSIONS

This preliminary investigation has revealed that casi data can be used to detect acid mine
drainage. It is a common belief that image data covering only the visible and near-infrared
wavelengths are not capable of detecting mineral composition. This is because of the strong
absorption features of minerals occurring in the shortwave-infrared region of the electromagnetic
spectrum. However, due to the association of oxidized tailings with iron oxides, the occurrence of
AMD can be inferred using iron oxide as an indicator. Iron oxides are featured as various shades of
yellow, red, and brown colours in rocks, soils, and water (Schwertmann and Cornell, 1991). They
can be identified using the visible and near-infrared portions of the spectrum as covered by the casi
data used for this investigation (Kruse et ol., 1991). This study shows that casi can be used to
recognize qualitatively the occurrence of AMD. For a future study, we will look at the relationship
between oxidized tailings (AMD) and the casi response in a quantitative manner.

The results of this study will assist mining companies in monitoring the migration of AMD. By
identifying possible affected sites, a more detailed survey can be conducted targeting these key areas
in order to reduce time and cost. Accordingly, proper control can be applied to mitigate the ne gative
impact of mine tailings on the surrounding environment.
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Species Identification and Stress Detection of Heavy-Metal
Contaminated Trees
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INTRODUCTION

‘Maatheide’ in the north-eastern part of Belgium is contaminated with heavy metals like zinc, lead, cupper and
cadmium due to several decades of zinc-melting activities. In August 2000 an airborne CASI campaign was
organized in this region. CASI images were acquired with a spatial resolution of 1 m by 1 m in 18 ‘vegetation
bands’, mainly concentrated in the red edge curve (680 nm- 780 nm). The most dominant tree types in this region
are pine, oak and birch. After the definition of pine, oak, birch, ... regions of interest, SAM classification and
subsequently multi-band segmentation and ‘highest frequency smoothing’, a pine mask, oak mask and birch mask
were created. For the pine mask several vegetation stress indices (Pefiuelas J., ef al.,1994, Zarco P.J., 1999) were
calculated. The ‘EGFN’ (Edge-Green First derivative Normalized difference) clearly indicates vegetation stress in
pine trees in the region near the former zinc-melting factory and no vegetation stress in pine trees for the reference
track where no heavy-metal contamination is expected.

OBJECTIVE OF THE STUDY AND LOCATION OF THE STUDY AREA

The aim of the study was to detect heavy-metal soil contamination by means of stress detection in vegetation which
has its roots in the historical contamination. The study area is located in the north-eastern part of Belgium. At the
end of the 70s the zinc factory was dismantled, crushed into small pieces and spread over the terrain. Therefore high
concentrations of Zn (10000 mg/kg), Pb (1700 mg/kg), Cu (1000 mg/kg) and Cd (10-70 mg/kg) can be found at the
site (J.Vangronsveld et al., 1995).

Data collection and processing

CASI images were collected in August Location Maatheide ( north-.eastern part of Belglu‘m )
2000 over the contaminated region of | Sensor CASI (Compact Airborne Spectrographic Imager)
‘Maatheide’, and were accompanied with | Airplane Piper Navajo Chieftain
simultaneous dGPS, reflectance and . - °
Field of view 37.8

irradiance measurements at the ground.

The flights lines were oriented in SW- Altitude 2600 ft

NE direction according the main wind | Ground speed 120 knots

direction and therefore the expected [ Spatial resolution | I mx 1 m

heavy—metal concenjcratlon gradlent. The Swath width S11m
images were acquired with a spatial

resolution of 1 m by 1 m in 18 Track length 30 km

‘vegetation bands’, mainly concentrated | Number of bands | 18

in the red edge curve (680 nm- 780 nm). Flight orientation | SW — NE

Table 1: Details of the CASI campaign 2000.



The geometrically corrected CASI images were atmospherically corrected with ATCOR4, developed by DLR.
ATCORA4 allows to deduce radiometric calibration correction factors based on the ground reflectance measurements

of natural and artificial targets.
DATA PROCESSING CHAIN

Figure 1 gives an overview of the
used processing chain starting from
18 bands radiometric, geometric
and atmospheric corrected CASI
images. Due to a spectral
calibration shift of the CASI sensor
of a few nm, ATCOR4 was not able
to correct properly at bands near the
0, and H,0O absorption features.
Therefore four spectral bands were
removed. A vegetation mask is built
using a NDVI threshold eliminating
non-vegetation pixels in order to
decrease the further processing
time.

ENVI’s Spectral Angle Mapper
(SAM) classification based on

Build & apply Select ROI’s dtjferent
vegetation for vegetation usmg vegetation
mask types 3 bands indices

type type
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Figure 1. Processing chain: from 18 bands CAS Iimages to contamination maps.

reference spectra determined from Regions Of Interest selected within the image (and verified in the field) results in
a first rough classification, as shown in figure 2. The insert shows that a single tree is classified as consisting of
different vegetation types. Multi-band segmentation with eCognition and ‘highest frequency smoothing’ is used to

determine the final class for each tree (figure 3).
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Figure 2: Result of SAM classification with image reference spectra. Insert: a single tree is

classified as consisting of different vegetation types.




Three spectral bands were used to
segment the image using color, shape
and scale parameters with eCognition.
The result is that corresponding pixels
of a tree are clustered. Each segment
is labeled with a unique number to
allow identification of each segment
(figure 3 middle). ‘Highest Frequency
Smoothing’ finally determines the
class attributed to each segment. To
avoid misclassifications only
segments consisting of at least 40%
meaningful pixels are considered as
shown in figure 3 (right).
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Figure 3: Left: Result of SAM classification with image reference spectra. A single
tree is classified as consisting of different vegetation types. Middle: Result of
multi-band segmentation with eCognition clustering pixels of a single tree
(segment) together. Right: ‘Highest Frequency Smoothing’ determines the class
attributed to each segment containing at least 40% meaningful pixels.

The final classification result after SAM classification, multi-band segmentation and ‘Highest Frequency
Smoothing’ is shown in figure 4 (left). Subsequently a pine mask could be deduced from the Pine class of the final
classification result (figure 4 right). Pine (Pinus Sylvestris L.) is the dominant tree type in this region.

Figure 4: Left: Result of SAM classification, multi-band segmentation and ‘Highest Frequency Smoothing’. Right: Pine mask
deduced from the Pine class after SAM classification, multi-band segmentation and ‘Highest Frequency Smoothing’.

For each pixel in the pine mask several vegetation stress indices (Pefiuelas J., et al., 1994, Zarco P.J., 1999) were
calculated and averaged per segment. The EGFN (Edge-Green First derivative Normalized difference) values are
represented by a 10 percentile color code. The EGFN vegetation stress index clearly indicates high vegetation stress
levels (low EGFN values) near the former zinc-melting factory (figure 5) and lower vegetation stress levels at more

distant locations.



Figure 5: EGFN vegetation stress index map for pine in the ‘Maatheide’ track. The location of the former zinc melting
factory is indicated by the white arrow.

The described vegetation stress detection technique was verified at a reference track where no heavy-metal
contamination is expected. Figure 6 shows the location of the ‘Maatheide’ track with the former zinc melting factory
indicated and the reference track.

Figure 6: Location of the ‘Maatheide’ track with the former zinc melting
factory indicated and reference track, where no heavy metal
contamination is expected.

Subsequently both tracks are 25° rotated clockwise and divided into 100 m slices. If at least 2% meaningful pixels
are present within the slice, the 20 percentile EGFN contribution bars are calculated. The location of the former
zinc-melting factory is indicated. Figure 7 clearly shows low vegetation stress levels (high EGFN values) for the
reference track as expected and high vegetation stress levels (low EGFN values) near the former zinc-melting
factory. For comparison Cd concentrations, determined from soil and vegetable samples collected in gardens about
1000 m south of ‘Maatheide’ by LISEC, are displayed for the same 100 m slices. Clearly a correlation is present



between the vegetation stress index EGFN for pine and the Cd concentrations 1000 m south of ‘Maatheide’: high Cd
concentrations (which are correlated with Zn concentrations) correspond to a low (red) EGFN value.
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Figure 7: EGFN 20 percentile contribution bars for 100 m slices of the reference track and the ‘Maatheide’ track. For
comparison the Cd concentration, determined from soil and vegetable samples collected 1000 m south of ‘Maatheide’,
are displayed.

CONCLUSIONS

SAM classification of 14 bands CASI images with reference spectra from image ROI’s, combined with multi-band
segmentation and ‘Highest Frequency Smoothing’ gives good vegetation type classification results. A pine mask is
deduced from the classification result and vegetation stress indices like EGFN are calculated for the pine mask. The
vegetation stress index EGFN shows high stress levels (low EGFN values) in the vicinity of the former zinc-melting
factory at ‘Maatheide’ and decreasing stress levels at more distant locations. The EGFN map was validated against
Cd and Zn concentrations determined from soil and vegetable samples collected about 1000 m south of ‘Maatheide’.
High EGFN values for the reference track, where no heavy-metal contamination is present, indicate the absence of
stress as expected. This technique to detect vegetation stress was applied successfully for pine, but can probably be
used to map vegetation stress in other tree types, crops, ...
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