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Abstract. This paper briefly describes the methods available for collection,
atmospheric and geometric correction, and processing of hyperspectral
imagery. Discussion of data capture concentrates on logistics of integrat-
ing image acquisition with field data collection. Atmospheric correction is
required to use the imagery with reference spectra from field and
laboratory sensors; a variety of methods for atmospheric correction are
described. Geometric correction is required for integration of the image
data and derived products with other geographic information. A descrip-
tion of methods for single and multiple feature identification is provided.
These all focus on the analysis of the spectral description of surface
materials provided by hyperspectral imagery; methods for multiple feature
identification take advantage of high spectral dimensionality of the
imagery to identify sub-pixel components. A role for spatial analysis
combined with spectral analysis in interpretation of environmental features
is identified.

Key words: High spatial resolution, hyperspectral imagery, analysis,
atmospheric and geometric correction
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1 Introduction

The development of widely accessible high spatial resolution hyperspectral
(HSRH) data is relatively recent, and thus is a relatively novel data source
for analysis of large spatial scale environmental and earth science questions.
Although the principles of spectroscopy are well known and methods for
analysis are well developed, particularly for spectra collected in laboratory
environments (e.g.,Clark et al. 1992; Clark and Swayze 1995), the hetero-
geneity of landscapes and earth surface features in large scale environmental
studies presents new challenges and opportunities for analysis of hyperspec-
tral imagery. Likewise, although principles of ground truthing and accuracy
assessment are well established in remote sensing literature (e.g., Congalton
and Green, 1999), the high spatial resolution of modern data presents
challenges to field data collection and data analysis.
This paper describes some of the major technical issues in capturing and

processing high spatial resolution hyperspectral imagery. We also guide the
reader to major literature on these topics, much of which is contained in the
‘‘grey literature’’ of conference proceedings and web sites. Methods and
analyses applied to high spatial resolution hyperspectral imagery are
described in the same sequence that a typical user encounters. Explanation
of data collection and image pre-processing is followed by description of a
series of methods for data analysis. We conclude with suggestions for ways to
enhance future analysis of hsrh data.

2 The nature of high spatial resolution hyperspectral imagery

The principles of spectroscopy employed in hyperspectral image data
collection and processing are well known and have been used for many
years (Goetz et al. 1985). Spectroscopy measures the electromagnetic
radiation from objects as a spectrum, with different materials having
different characteristic spectra based on their chemical composition. For
example, minerals (Goetz et al. 1985; Kruse et al. 1993; Clark and Swayze
1995), vegetation (Ustin et al. 1999), plant properties (Gamon et al. 1993,
1995; Roberts et al., 1993; Ustin et al. 1996) snow and ice (Clark and Swayze
1995), and soils (Palacios-Oreuta and Ustin 1996) have all been successfully
and directly identified and measured using spectroscopy. Hyperspectral
remote sensing measures the spectral properties of the environment using
imaging spectrometers placed on airborne and spaceborne platforms. A list
of hyperspectral imaging systems can be found at http://rst.gsfc.nasa.gov/
sect13/is_list.html.
The word ‘‘hyper,’’ literally translated, means ‘‘excessive in extent or

quality’’ or ‘‘over, above, beyond’’ (Gove 1976, p. 1112). In contrast to
multispectral scanners, the amount of spectral information recorded by
hyperspectral spectrometers thus exceeds the amount required to identify
many features. This ‘‘excess’’ information results from the high spectral
resolution (i.e., narrow band widths) relative to multispectral scanners and
the wide range of spectra that are recorded, which together enable users to
extract subtle differences in spectral signatures. There is no absolute
definition of how many bands are needed or how narrow the bandwidths
need to be to make imagery ‘‘hyper,’’ although most sensors that are called
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hyperspectral have 48 or more bands with spectral resolutions of 20 nm or
smaller. A number of the key characteristics that influence the data collected
by hyperspectral sensors are described in Table 1.
Just as there is not a specific number of bands required for imagery to be

hyperspectral, there is no clear threshold of pixel size at which coarse spatial
resolution imagery transitions to high spatial resolution imagery. For the
purposes of our work, we define high spatial resolution as imagery with
pixels that are 5 m or less in size. This size range represents (for hyperspectral
imagery), a spatial resolution that has only recently become available as
sensors have been mounted on low flying aircraft. In addition, pixels that are
5 m or smaller in size present georectification, coregistration and ground
truthing problems that are not present with coarser spatial resolution
hyperspectral analysis.

3 Data collection and pre-processing of the imagery

3.1 Flight planning for high spatial resolution hyperspectral data collection

At the present time, acquisition of airborne hsrh imagery is limited by
instrument availability and cost. A number of instruments, such as Probe1
and HyMap, are commercially available, while other instruments such as
AVIRIS are available to NASA-supported researchers. In addition to
financial costs, data collection using commercial instruments has a number
of logistical constraints. Weather conditions influence flights and the quality

Table 1. Properties of imaging spectrometers

Property Description

Spectral range describes the measured range of the electromagnetic spectrum.

Different materials absorb in different wavebands thus the spectrum

recorded by an instrument should include these characteristic

wavebands to help identify different materials.

Airborne and spaceborne instruments typically record in the visible

and near infrared spectrum (0.4 lm to 2.5–3.0 lm).
Spectral bandwidth the width of an individual band in the spectrometer. Bands are

adjacent in a spectrometer to provide continuous measurement of

the entire spectrum. The narrower the bandwidth, the narrower the

absorption features that can be measured and the greater the

resolution of the spectrum.

Bandpass profile describes the shape of the response of the detector in the

spectrometer across the spectral bandwidth. The shape is usually

gaussian. The width of the bandpass profile is described as the

wavelength at the 50% response level of the function, the Full

Width at Half Maximum.

Spectral sampling the distance in wavelength between bandpass profiles for each

channel as a function of wavelength.

Signal to noise ratio describes the precision with which the spectrometer measures the

spectrum relative to the detail needed to resolve particular features.

A lower signal to noise ratio is needed for strong spectral features

while a higher signal to noise ratio is needed for weak features.
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of data collected, flight scheduling must be coordinated with field data
collection, since ground-based data may be required on the day of the flight
or in the several days immediately surrounding it. We suggest that
individuals planning HSRH-flights have a project management strategy that
particularly focuses on the logistics of data collection.

3.2 Initial considerations for image processing and field data collection

As with any remote sensing analysis, the nature of field data collection and
image pre-processing required to use hsrh imagery will depend on how the
data will be analysed. Of particular importance is whether a ‘‘top-down’’ or
‘‘bottom-up’’ analysis is envisioned.
Top-down approaches use field mapping to train the imagery to detect

certain features. Field surveys and accurate georeferencing and co-registra-
tion of images and field maps are required for top-down approaches. In some
instances however, atmospheric corrections may not be required with top
down approaches. The small geographic extent of hsrh images reduces the
potential for significant variations in atmospheric effects across the scene,
while mapping field features directly to the image means that the classifying
algorithm can incorporate atmospheric effects into the feature spectra as it
searches the image to find similar features. A particular feature type will
therefore probably appear similar across the entire image and the atmo-
spheric effects should not overly confuse the mapping process. As one
extends the analysis over larger areas or between images, however, ignoring
atmospheric effects becomes increasingly untenable.
In contrast, bottom-up approaches typically use ground-based or labora-

tory-based spectral libraries to identify key features. In this situation,
atmospheric corrections are absolutely essential, because the effects of the
atmosphere must be removed in order for image spectra to match library
spectra. Because the identification of features relies on the matching of
spectra rather than overlaying ground maps on the imagery, georeferencing
and image co-registration can be relatively unimportant in the bottom-up
approach. In bottom-up approaches using library spectra accurate atmo-
spheric corrections are particularly important, where specific bands are very
strongly affected by atmospheric composition (Table 2). The great advantage
of bottom-up approaches is that the same spectral library can be extended
over wide areas and across multiple images to identify specific feature types,
as long as the images are atmospherically corrected.

Table 2. Absorption wavelengths of common atmospheric constituents

Constituent Absorption wavelength (lm)

Ozone 0.35

9.6

CO2 1.6

2.005

2.055

Water 0.69

0.72

0.76
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HSRH-imagery can sometimes provide the unique opportunity to take
advantage of the strong points of both top-down and bottom-up
approaches, while avoiding some of their pitfalls. Because the pixel
resolution is small, the image may contain pixels that contain only the
feature of interest (e.g., a wetland, a plant species type, or a particular soil
type). Spectra can be collected from these pixels to create an airborne
spectral library. The great advantage of this type of library is that it
incorporates the atmospheric effects in the feature spectra and therefore
does not require applying the many assumptions and uncertainties inherent
in atmospheric corrections and the matching of image spectra with library
spectra. Likewise, the ability to visually identify and map these pure pixels
directly to the image (much like an air photo) means that precision field
mapping and image georectification may not be necessary to accurately map
features on the image.

3.3 Atmospheric corrections

Analytical approaches: As noted above, the data collected by airborne or
spaceborne hyperspectral sensors are not immediately comparable to
laboratory or ground-based spectra, because the atmosphere alters the
spectral signal reaching the sensor. Data collected using imaging spectrom-
eters therefore must be converted from raw radiance values to atmospher-
ically corrected reflectance values to allow spectra to be compared with
reference spectra in spectral libraries (Kruse 1994). Ideally, absolute
reflectance is calculated, although there are several methods that produce
relative reflectance.
Image processing to remove atmospheric effects requires both calibration

and atmospheric correction. Calibration adjusts the image by converting raw
radiance values to absolute or relative reflection values. Atmospheric
corrections then adjust these reflectance values for each pixel and wavelength
to adjust for some combination of differing path lengths and effects of
atmospheric composition (Table 2).
Calibration uses several methods to convert measured values to relative

reflectance or absolute reflectance. Flat field calibration, logarithmic resid-
uals (Green and Craig 1985) and internal average relative reflectance (IARR)
(Kruse 1988) produce relative reflectance spectra. Flat field calibration is
used to normalize images to an area of known reflectance on the ground. The
method divides the ground reference spectra into the image spectra for each
band, then uses the resultant ratios to calculate the relative reflectance at
each pixel. IARR calibration is used to normalize images to a scene’s average
spectrum. This is effective for reducing imaging spectrometer data to relative
reflectance in an area where no ground measurements exist and little is
known about the scene. An average spectrum is calculated from the entire
scene; this is then used as the reference spectrum and divided into the
measured spectrum at each pixel of the image to estimate relative reflectance.
If this method must be used, it operates best in arid areas with no vegetation.
Empirical line calibration and calibration to an atmospheric model are

methods for estimating apparent (absolute) reflectance. Empirical line
calibration is used to force image data to match selected field reflectance
spectra and requires a priori knowledge of a site (Conel et al. 1987).
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Reference field or laboratory spectra are collected for known locations that
cover the full range of spectral variation in the image. Specific pixels from the
image are associated with these reference spectra and linear regression is used
to calculate the gain and offset needed to convert the digital number for each
image band to reflectance. This is equivalent to removing the solar irradiance
and the atmospheric path radiance. The instrument digital numbers are then
converted to reflectance using the gain and offset values. Of the empirical
methods, this produces spectra that are most comparable with field or
laboratory spectra.
Calibration to apparent (absolute) reflectance can be made using an

appropriate atmospheric model (Gao et al. 1993). The Atmospheric Removal
Program (ATREM) (Gao and Goetz 1990) is a radiative transfer model-
based method for calibration to absolute reflectance that requires no ground-
based measurement. The method was developed for 224 band AVIRIS data.
A three channel ratioing method uses the water vapor absorption bands to
calculate the amount of water vapour for each pixel. This produces an image
of water vapour concentrations. This image is used with transmittance
spectra of atmospheric gases to produce scaled surface reflectance. Similarly,
MODTRAN, a radiative transfer model (Berk et al. 1998, 1999) can be used
to estimate reflectance (Adler-Golden et al. 1998; Gastil and Melack 1998).
A variety of combination methods have also been used. Clark et al. (1995)

used a combination of ATREM and the empirical line method to correct
model errors in ATREM by calculating normalization factors for one pixel
and then applying them to the rest of the ATREM-corrected image. Goetz
et al. (1998) combined ground measurements of spectral irradiance with
MODTRAN to derive a model equivalent to an empirical line method
correction that did not require uniform ground targets of different
reflectance. Goetz et al. (1997) and Boardman (1998) also describe an
analytical process, the Empirical Flat Field Optimal Reflectance Transfor-
mation (EFFORT) that bootstraps a linear adjustment to apparent
reflectance spectra to improve the accuracy of spectra from AVIRIS
following calibration with ATREM. This improves the comparison with
library-based spectra, the basis of many of the image interpretation methods.
The effect of different methods for calibration and atmospheric correction

on the characteristic spectral profile for materials is pronounced. Figure 1
shows the raw digital numbers and atmospherically corrected spectral profile
for a pixel measured using the Probe1 hyperspectral instrument. Data
analysis to identify materials is sensitive to the calibration method used,
particularly when generating spectral libraries from imagery, or comparing
images to field or laboratory derived reference spectra. Correction using an
atmospheric model is recommended since the resulting data can be used with
spectral libraries and are comparable for different images.

Data collection considerations: The amount of field effort needed to collect
ground-based data for atmospheric corrections varies from nothing to
extensive, depending on the algorithm that is used. The IARR method
requires no field data, which eliminates field expenses, but at the cost of
accuracy. ATREM is far more accurate than the IARR method and requires
no field data, but does require an imaging spectrometer that collects narrow
band width data in the water vapor absorption bandwidths. Flat field
calibration only requires spectral data from one site. Empirical line
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calibration requires a minimum of two ground references sites that represent
end members of spectral reflectance, although a number of reference sites
along the continuum of reflectance values is preferable. MODTRAN
requires extensive ground-based measurements, including RADIOSONDE
data to characterise atmospheric thermal structure and water content at
different levels.
A number of problems commonly arise with collection of field spectra for

atmospheric corrections. Reference targets should be at least 3 · 3 pixels in
size to insure that the center pixel provides a pure signal on the image that
is uncontaminated by spectral mixing with adjacent pixels. Finding
homogenous features of this size can be difficult, especially in natural
settings. Because one is usually trying to collect ground reference data on
the day of the flight, one does not have the imagery to guide spectral end
member selection for the empirical line approach. Too often one discovers
at a later date that the ground sites only represent a portion of the range of
spectral reflectances. Finally, the uncertainty in flight timing and difficulties
with keeping field teams permanently on alert can mean that there are
significant time gaps between ground data collection and image acquisition,
which in turn casts doubt on the validity of the ground reference data as a
guide to calibrating the image. If ground-based calibrations techniques are
going to be used, researchers should therefore spend significant time in the
field prior to the flight to locate reference sites that are sufficiently large,
that represent light and dark end members, and that are relatively
unchanging over time.

Fig. 1. Probe 1 raw and atmospherically corrected spectral profile
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Spectral data to develop spectral libraries typically come from laboratory-
based spectrometers or portable field spectrometers, all of which are costly to
buy or rent and require expert operators. Financial and personnel constraints
can thus be a major constraint if equipment and expert operators are not
available at reduced cost through research institutes or if existing spectral
libraries (Table 3) cannot be used.

4 Geometric Corrections

Analytical approaches: Most hyperspectral imaging systems record spectra
using cross track or ‘‘whisk broom’’ sensors, which record the complete
spectra for one pixel on the ground before moving (‘‘whisking’’) to the next
pixel. This contrasts with along track (or ‘‘push broom’’) sensors that record
multiple spatial instances of a particular spectral band at one time and are
more akin to an optical photograph in their geometric characteristics.
Since hyperspectral imaging systems collect data pixel-by-pixel as they scan

across track perpendicular to the flight line, the ground location of these
pixels can jump dramatically from pixel to pixel due to the pitch, yaw and
roll of the aircraft coupled with the cross track scanning of the instrument.
Geometric correction of hyperspectral imagery is therefore important in
order for the data to be referenced to real world locations and to be used with
other spatially referenced data sets. This presents three issues for geometric
correction. First, the overall geometry of the imagery is variable since each
pixel is collected separately. Standard geometric correction techniques (using
n-term polynomial or rubber sheet warping with control points to register
images to ground coordinates) is inappropriate and usually unsuccessful
(Clark et al. 1998). Second, the pixels may be of variable spatial dimension.
Third, there may not be complete coverage of the ground surface. In
AVIRIS, which was designed for the relatively stable and predictable motion
of the ER-2 platform flying at 20 km elevation, the sensor scanning frequency
is tuned to the forward motion of the platform and images are spatially
continuous with constant pixel size. Airborne hyperspectral instruments in
other platforms are sensitive to the motion of the platform (Boardman 1999).
Clark et al. (1998) and Boardman (1999) have presented methods for

geometric correction of hyperspectral imagery from on-board navigation
devices. Clark et al. (1998) use a series of equations to correct AVIRIS for
the motion of the ER-2 platform, although they do not correct for
topographic effects (e.g. changes in elevation). Boardman (1999) uses an
onboard Global Positioning System/Inertial Navigation System, C-MIGITS-
II to obtain x,y,z (from the GPS) and 3-axis attitude data (from the INS) to

Table 3. Reference libraries for spectra

Features in library Reference Library source

Minerals Clark et al. (1993) http://speclab.cr.usgs.gov

Minerals Grove et al. (1992) http://speclib.jpl/nasa.gov

2000 natural and

man-made materials

http://speclib.jpl/nasa.gov

Vegetation Clark et al. (1993) http://speclab.cr.usgs.gov
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develop and apply a full photogrammetric camera model for low altitude
AVIRIS data. The model uses ray-tracing to locate each pixel on the ground
surface, a digital elevation model providing ground elevation data. The
output is ortho-corrected with full (x,y,z) geo-referencing for each pixel
(Boardman 1999). This method has potential for application to any
hyperspectral image data, provided GPS/INS data are collected at a
frequency that matches the scan frequency of the imaging device and can
be digitally tied to the imagery using a common time reference.
The ray-tracing technique is a powerful technique that is both accurate and

precise. It is also complex, however, and is not presently built into
commercial software. Researchers wanting to use the technique must
therefore contract through the commercial vendor that developed it. If the
ray-tracing technique is not available because of instrument or logistical
constraints, one must then choose between less than optimal solutions. If the
plane experienced significant turbulence, the standard polynomial transfer
functions are particularly inappropriate because they assume linear or
curvilinear variations in pixel location across the entire image, when in fact
the image locations vary in a non-linear manner. In this case, a local
triangulation technique is preferable, with multiple local control points (e.g.
trees) being used to segment the image into triangles, with the images within
each triangle being stretched to fit that local surface.

Data collection considerations: HSRH imagery poses particularly severe
constraints on the geographic precision required to coregister ground-based
maps and pixel locations on images. Locational inaccuracies of only 0.5–1 m
can lead to mismatches between image pixels and field maps with high spatial
resolution data (Wright et al. 2000; Marcus et al. 2001). When supervised
classification techniques are used, this mismatch of image pixels and ground
features associates the wrong spectra with ground features, which in turn
generates significant inaccuracies in image classification.
Avoiding these mismatches is particularly difficult with HSRH imagery.

Even if the image is georeferenced to ±2 m using the ray-tracing approach, it
is difficult to locate features on the ground with this degree of accuracy,
especially in natural settings without bench marks, intersections, and features
that have well identified point locations. Considerable pre-flight planning
should therefore be devoted to considerations of image and map overlay.
The optimal and most accurate approach to precise coregistration of

imagery and maps is to map directly to the imagery, using the imagery like an
air photo. This is not possible in many cases, however, because researchers
often want to map as close to the flight date as possible to insure that
mapped features (e.g., stream depths, vegetation cover, soil moisture, etc.)
represent conditions shown on the imagery. Some operators of hyperspectral
sensors cannot provide imagery rapidly, while others can have same day turn
around under the appropriate circumstances. If mapping directly to imagery
is a desired method, users should query sensor operators about the turn
around time that is required and make this part of the data contract.
Precision location can also be accomplished by placing targets in the field

that show up clearly on images. This works well for marking the corners of
sample grids or the ends of transects. We have found that 2 · 2 m plastic
ground tarps show up well in natural landscapes with pixel resolutions as
large as 5 m. The tarps saturate the pixel spectra, particularly in near
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infrared bands where the plastic reflectance is radically different than the
natural background materials.
One can also do precision mapping using classic field survey equipment or

GPS. Unless ground truth sites exist that cover many pixels, however, we do
not recommend this approach. Ground map precisions as tight as +0.5 m
challenge GPS and survey techniques unless field teams are willing to expend
significant time, which in turn limits the amount of ground data that can be
collected. Second, even with sub-meter precision and accuracy in the ground
map, it is almost impossible (even with ray-tracing) to generate comparable
precision in the image, unless meter scale DEMs are available. Coregistration
of imagery and field maps may therefore still be inaccurate. To overcome this
problem, ground truth sites that cover many pixels should be mapped. This
allows boundary pixels where overlap errors occur to be discarded from
overlay analysis. Unfortunately, many features (e.g., a particular vegetation
type such as willows) may not cover multiple pixels even on HSRH-imagery.
Finally, with hyperspectral data, it may not be necessary to have precise

locations for ground sites. As noted previously, if a feature has a clear
spectral signature, the feature can be detected using spectral matching
techniques discussed below. Given the severe coregistration problems
associated with HSRH-imagery, this spectral matching approach should be
seriously considered as an alternative to supervised classification whenever
hyperspectral data are available.

5 Data analysis

Hyperspectral imagery presents a number of opportunities for interpretation
and analysis and can make use of methods beyond the standard statistically-
based image classification methods used in multi-spectral remote sensing.
Multispectral images are often analysed using multivariate statistical classi-
fiers that treat individual wavebands in the imaging instrument as a series of
independent variables. These ‘‘standard’’ methods for image classification
can be applied to hyperspectral imagery although statistical classification of
high-dimensional data that exhibits correlation between spectral bands fails
to take full advantage of the key feature of the imagery, namely that it
provides access to a measurement of a near complete spectrum for each pixel
using narrow wavebands. The data provided by calibrated hyperspectral
imagery are comparable with laboratory spectra measured for materials.
These reference spectra provide digital ‘lookup’ keys to the composition of
pixels and provide a direct measurement of the material being sensed.
A number of specialised methods have been developed to take advantage

of the characteristic spectra of materials and there are several reference
spectral libraries that provide descriptions of the spectra of materials
(Table 3). Further libraries tailored to specific applications of hyperspectral
imagery are needed to complement the libraries organised around classes of
materials. For example, for health related applications, libraries may be
developed that contain spectra for characteristics of habitats that are known
to have a close association with vectors of diseases. Kitron et al. (1996) use
Landsat Thematic Mapper data and GIS to investigate the distribution of
tsetse flies in Kenya and the approach could be extended to hyperspectral
imagery with appropriate spectral libraries. Analysis of hyperspectral
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imagery usually requires an empirical match to be made between the image
spectra and a set of reference spectra (end-members) from a spectral library
for known materials. Reference spectra can be measured in the laboratory or
field; they may also be derived from the hyperspectral imagery itself.
Analysis methods focus either on a) classifying each pixel into a single class

by identifying the main material in the pixel, or b) estimating the
composition of a pixel using an un-mixing method that identifies multiple
materials and their relative abundance within a pixel.

5.1 Single feature identification

There are four main methods for identifying single feature types within
hyperspectral imagery:

a) binary encoding,
b) continuum removal,
c) spectral angle mapper, and
d) spectral feature fitting.

Binary encoding: Binary encoding (Mazer et al. 1988) is a classification
method that encodes the image data and reference spectra into 0 s and 1s
based on whether a band falls below or above the spectrum mean. An
exclusive OR function is then used to compare each encoded reference
spectrum with the encoded image spectra and classify the image. Each pixel is
classified to the material with the greatest number of bands that match,
above a minimum match threshold.

Continuum removal: Continuum removal normalizes reflectance spectra to
allow comparison of individual absorption features from a common baseline
(Kruse et al. 1985; Clark et al. 1987; Kruse et al. 1993a). A convex hull that is
fitted to the spectrum describes the continuum. Straight-line segments
connect local spectra maxima to define the convex hull, the first and last
spectral data values being on the hull by definition.

Spectral angle mapper: The Spectral Angle Mapper (Kruse et al. 1993b)
matches pixel spectra to reference spectra using a measure of spectral
similarity based on the angle between the spectra treated as vectors in an n-
dimensional space with dimensionality, n, equal to the number of image
bands. Smaller angles represent closer matches. The angle between each pixel
and all reference spectra can be mapped and pixels assigned to the material
for which the spectral angle is smallest and within a defined limiting angle.
When used on calibrated reflectance data, the spectral angle mapper is
relatively insensitive to effects of illumination and albedo since the angle
between vectors is measured rather than the length of the vector.

Spectral feature fitting: Spectral Feature Fitting uses least squares methods
to compare the fit of image spectra to selected reference spectra (Clark et al.
1990, 1991; Crowley and Clark 1992; Swayze and Clark 1995). Reference
spectra are scaled to match the image spectra after continuum removal from
both data sets. The method measures absorption feature depth which is
related to material abundance.
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5.2 Un-mixing methods

Un-mixing methods take advantage of the high-dimensionality of the
hyperspectral data to identify sub-components of the spectrum for each
pixel. These methods identify the relative contribution of different materials
to the spectral composition of a given pixel. They thus provide the capability
to map sub-pixel features and abundance of different materials. There are
three main methods for un-mixing:

a) matched filtering,
b) spectral un-mixing/spectral mixture analysis, and
c) mixture tuned matched filtering.

Matched filtering: The Matched Filtering method is described by Harsanyi
and Chang (1994) and Boardman et al. (1995). Matched filtering performs a
partial un-mixing of spectra to estimate the abundance of user-defined end-
members from a set of reference spectra. Matched filtering does not require
knowledge of all the end-members within an image scene and can also be
used to identify single feature types.

Spectral un-mixing/spectral mixture analysis: Spectral un-mixing (Board-
man, 1989, 1993) determines the relative abundance of materials based on
the spectral characteristics of materials. Reflectance in each image pixel is
treated as a linear combination of the reflectance of each end-member
present within the pixel. The number of end-members must be less than the
number of spectral bands and all of the end-members represented in the
image must be used. Boardman (1989) applies singular value matrix
decomposition to un-mix hyperspectral data. Spectral libraries provide the
initial data matrix to this method.

Mixture tuned matched filtering: Boardman (1998) describes mixture tuned
matched filtering (MTMF), a method that builds on the strengths of matched
filtering and spectral un-mixing. MTMF combines the ability to map a single
known target without knowledge of all end-member signatures with the
leverage of mixed pixel models including constraints on feasibility. MTMF
also reduces the incidence of false positives.

6 Opportunities for spatial analysis of high spatial resolution
hyperspectral imagery

The methods described for analysis of hyperspectral imagery identify
materials based solely on the analysis of spectra. The spatial component of
hyperspectral imagery offers an additional feature of the data with potential
for application in interpretation and mapping of landscape objects. Spatial
analysis may help in at least two ways. First, the spatial structure of
spectral information in imagery can be used to augment spectral based
analysis. Pinzon et al. (1998) and other papers in this issue address the use
of spatial analysis as a complement to spectral analysis. Second, spatial
analysis may be used to interpret the distribution of materials identified
from the imagery by spectral analysis to map and model environmental
objects of interest.
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INTRODUCTION 
 
‘Maatheide’ in the north-eastern part of Belgium is contaminated with heavy metals like zinc, lead, cupper and 
cadmium due to several decades of zinc-melting activities. In August 2000 an airborne CASI campaign was 
organized in this region. CASI images were acquired with a spatial resolution of 1 m by 1 m in 18 ‘vegetation 
bands’, mainly concentrated in the red edge curve (680 nm- 780 nm). The most dominant tree types in this region 
are pine, oak and birch. After the definition of pine, oak, birch, … regions of interest, SAM classification and 
subsequently multi-band segmentation and ‘highest frequency smoothing’, a pine mask, oak mask and birch mask 
were created. For the pine mask several vegetation stress indices (Peñuelas J., et al.,1994, Zarco P.J., 1999) were 
calculated. The ‘EGFN’ (Edge-Green First derivative Normalized difference) clearly indicates vegetation stress in 
pine trees in the region near the former zinc-melting factory and no vegetation stress in pine trees for the reference 
track where no heavy-metal contamination is expected. 
 
 
OBJECTIVE OF THE STUDY AND LOCATION OF THE STUDY AREA 
 
The aim of the study was to detect heavy-metal soil contamination by means of stress detection in vegetation which 
has its roots in the historical contamination. The study area is located in the north-eastern part of Belgium. At the 
end of the 70s the zinc factory was dismantled, crushed into small pieces and spread over the terrain. Therefore high 
concentrations of Zn (10000 mg/kg), Pb (1700 mg/kg), Cu (1000 mg/kg) and Cd (10-70 mg/kg) can be found at the 
site (J.Vangronsveld et al., 1995).                   
               
   
Data collection and processing 
 
CASI images were collected in August 
2000 over the contaminated region of 
‘Maatheide’, and were accompanied with 
simultaneous dGPS, reflectance and 
irradiance measurements at the ground. 
The flights lines were oriented in SW-
NE direction according the main wind 
direction and therefore the expected 
heavy-metal concentration gradient. The 
images were acquired with a spatial 
resolution of 1 m by 1 m in 18 
‘vegetation bands’, mainly concentrated 
in the red edge curve (680 nm- 780 nm).  
    
   Table 1: Details of the CASI campaign 2000. 

Location Maatheide ( north-eastern part of Belgium ) 
Sensor CASI (Compact Airborne Spectrographic Imager) 
Airplane Piper Navajo Chieftain 
Field of view 37.8° 
Altitude 2600 ft 
Ground speed 120 knots 
Spatial resolution 1 m x 1 m 
Swath width 511 m 
Track length 30 km 
Number of bands 18 
Flight orientation SW – NE 

 
 



 
 
The geometrically corrected CASI images were atmospherically corrected with ATCOR4, developed by DLR. 
ATCOR4 allows to deduce radiometric calibration correction factors based on the ground reflectance measurements 
of natural and artificial targets.    
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Figure 1 gives an overview of the 
used processing chain starting from 
18 bands radiometric, geometric 
and atmospheric corrected CASI 
images. Due to a spectral 
calibration shift of the CASI sensor 
of a few nm, ATCOR4 was not able 
to correct properly at bands near the 
O2 and H2O absorption features. 
Therefore four spectral bands were 
removed. A vegetation mask is built 
using a NDVI threshold eliminating 
non-vegetation pixels in order to 
decrease the  further processing 
time.  
 
 

Figure 1. Processing chain: from 18 bands CAS Iimages to contamination maps.                   ENVI’s Spectral Angle Mapper 
(SAM) classification based on 
reference spectra determined from Regions Of Interest selected within the image (and verified in the field) results in 
a first rough classification, as shown in figure 2.  The insert shows that a single tree is classified as consisting of 
different vegetation types. Multi-band segmentation with eCognition and ‘highest frequency smoothing’ is used to 
determine the final class for each tree (figure 3).  
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Result of SAM classification with image reference spectra. Insert: a single tree is 
classified as consisting of different vegetation types.  

 
 
 
 
 
 



Three spectral bands were used to 
segment the image using color, shape 
and scale parameters with eCognition. 
The result is that corresponding pixels 
of a tree are clustered. Each segment 
is labeled with a unique number to 
allow identification of each segment 
(figure 3 middle). ‘Highest Frequency 
Smoothing’ finally determines the 
class attributed to each segment. To 
avoid misclassifications only 
segments consisting of at least 40% 
meaningful pixels are considered as 
shown in figure 3 (right). 
 
 
 Figure 3: Left: Result of SAM classification with image reference spectra. A single

tree is classified as consisting of different vegetation types.  Middle: Result of
multi-band segmentation with eCognition clustering pixels of a single tree
(segment) together. Right: ‘Highest Frequency Smoothing’ determines the class
attributed to each segment containing at least 40% meaningful pixels. 

 
 
 
 
 
The final classification result after SAM classification, multi-band segmentation and ‘Highest Frequency 
Smoothing’ is shown in figure 4 (left). Subsequently a pine mask could be deduced from the Pine class of the final 
classification result (figure 4 right). Pine (Pinus Sylvestris L.) is the dominant tree type in this region. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Left: Result of SAM classification, multi-band segmentation and ‘Highest Frequency Smoothing’. Right: Pine mask 
deduced from the Pine class after SAM classification, multi-band segmentation and ‘Highest Frequency Smoothing’.   
 
For each pixel in the pine mask several vegetation stress indices (Peñuelas J., et al.,1994, Zarco P.J., 1999) were 
calculated and averaged per segment.  The EGFN (Edge-Green First derivative Normalized difference) values are 
represented by a 10 percentile color code. The EGFN vegetation stress index clearly indicates high vegetation stress 
levels (low EGFN values) near the former zinc-melting factory (figure 5) and lower vegetation stress levels at more 
distant locations. 
 
 
 
 
 



 
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: EGFN vegetation stress  index map for pine in the ‘Maatheide’ track. The location of the former zinc melting 
factory is indicated by the white arrow. 
 
 

 

 
The described vegetation stress detection technique was verified at a reference track where no heavy-metal 
contamination is expected. Figure 6 shows the location of the ‘Maatheide’ track with the former zinc melting factory 
indicated and the reference track. 
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Figure 6: Location of the ‘Maatheide’ track with the former zinc melting
factory indicated  and reference track, where no heavy metal
contamination is expected. 

 
Subsequently both tracks are 25° rotated clockwise and divided into 100 m slices. If at least 2% meaningful pixels 
are present within the slice, the 20 percentile EGFN contribution bars are calculated. The location of the former 
zinc-melting factory is indicated. Figure 7 clearly shows low vegetation stress levels (high EGFN values) for the 
reference track as expected and high vegetation stress levels (low EGFN values) near the former zinc-melting 
factory. For comparison Cd concentrations, determined from soil and vegetable samples collected in gardens about 
1000 m south of ‘Maatheide’ by LISEC, are displayed for  the same 100 m slices. Clearly a correlation is present 



between the vegetation stress index EGFN for pine and the Cd concentrations 1000 m south of ‘Maatheide’: high Cd 
concentrations (which are correlated with Zn concentrations) correspond to a  low  (red)  EGFN value. 
 
 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100 103 106 109 112 115 118 121 124 127 130 133 136 139 142 145 148 151 154 157 160 163 166 169 172 175 178 181 184 187 190 193 196 199 202 205

0

5

10

15

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

Cd concentraction  (mg/kg)

Location of the 
former zinc factory 

Maatheide track

LISEC data

Reference track 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 7: EGFN 20 percentile contribution bars for 100 m slices of the reference track and the ‘Maatheide’ track. For

comparison the Cd concentration, determined from soil and vegetable samples collected 1000 m south of ‘Maatheide’,
are displayed. 

 
 
 
 
CONCLUSIONS 
 
SAM classification of 14 bands CASI images with reference spectra from image ROI’s, combined with multi-band 
segmentation and ‘Highest Frequency Smoothing’ gives good vegetation type classification results. A pine mask is 
deduced from the classification result and vegetation stress indices like EGFN are calculated for the pine mask. The 
vegetation stress index EGFN shows high stress levels (low EGFN values) in the vicinity of the former zinc-melting 
factory at ‘Maatheide’ and decreasing stress levels at more distant locations. The EGFN map was validated against 
Cd and Zn concentrations determined from soil and vegetable samples collected about 1000 m south of ‘Maatheide’. 
High EGFN values for the reference track, where no heavy-metal contamination is present, indicate the absence of 
stress as expected. This technique to detect vegetation stress was applied successfully for pine, but can probably be 
used to map vegetation stress in other tree types, crops, …  
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