PERMIT TO CONSTRUCT

Under the authority of RSMo 643 and the Federal Clean Air Act the applicant is authorized to construct the air contaminant source(s) described below, in accordance with the laws, rules and conditions as set forth herein.

Permit Number: 07 2011-011 Project Number: 2010-10-012
Installation Number: 225-0045

Parent Company: THI
Parent Company Address: 1901 East Ellsworth, Ann Arbor, MI 48108
Installation Name: Undercover, Inc.
Installation Address: 59 Absolute Drive, Rogersville, MO 65742
Location Information: Webster County (S21, T28N, R19W)

Application for Authority to Construct was made for:

The installation of six coatings booths, one cleaning booth, one sanding booth and 11 natural gas ovens. This review was conducted in accordance with Section (6), Missouri State Rule 10 CSR 10-6.060, Construction Permits Required.

☐ Standard Conditions (on reverse) are applicable to this permit.
☑ Standard Conditions (on reverse) and Special Conditions are applicable to this permit.

JUL 22 2011
EFFECTIVE DATE

DIRECTOR OR DESIGNEE
DEPARTMENT OF NATURAL RESOURCES
STANDARD CONDITIONS:

Permission to construct may be revoked if you fail to begin construction or modification within two years from the effective date of this permit. Permittee should notify the Air Pollution Control Program if construction or modification is not started within two years after the effective date of this permit, or if construction or modification is suspended for one year or more.

You will be in violation of 10 CSR 10-6.060 if you fail to adhere to the specifications and conditions listed in your application, this permit and the project review. In the event that there is a discrepancy between the permit application and this permit, the conditions of this permit shall take precedence. Specifically, all air contaminant control devises shall be operated and maintained as specified in the application, associated plans and specifications.

You must notify the Departments’ Air Pollution Control Program of the anticipated date of start up of these air contaminant sources. The information must be made available within 30 days of actual startup. Also, you must notify the Department of Natural Resources Regional office responsible for the area within which you are located within 15 days after the actual start up of these air contaminant sources.

A copy of this permit and permit review shall be kept at the installation address and shall be made available to Department of Natural Resources’ personnel upon request.

You may appeal this permit or any of the listed special conditions to the Administrative Hearing Commission (AHC), P.O. Box 1557, Jefferson City, MO 65102, as provided in RSMo 643.075.6 and 621.250.3. If you choose to appeal, you must file a petition with the AHC within 30 days after the date this decision was mailed or the date it was delivered, whichever date was earlier. If any such petition is sent by registered mail or certified mail, it will be deemed filed on the date it is mailed. If it is sent by any method other than registered mail or certified mail, it will be deemed filed on the date it is received by the AHC.

If you choose not to appeal, this certificate, the project review and your application and associated correspondence constitutes your permit to construct. The permit allows you to construct and operate your air contaminant sources(s), but in no way relieves you of your obligation to comply with all applicable provisions of the Missouri Air Conservation Law, regulations of the Missouri Department of Natural Resources and other applicable federal, state and local laws and ordinances.

The Air Pollution Control Program invites your questions regarding this air pollution permit. Please contact the Construction Permit Unit at (573) 751-4817. If you prefer to write, please address your correspondence to the Missouri Department of Natural Resources, Air Pollution Control Program, P.O. Box 176, Jefferson City, MO 65102-0176, attention: Construction Permit Unit.
SPECIAL CONDITIONS:
The permittee is authorized to construct and operate subject to the following special conditions:

The special conditions listed in this permit were included based on the authority granted the Missouri Air Pollution Control Program by the Missouri Air Conservation Law (specifically 643.075) and by the Missouri Rules listed in Title 10, Division 10 of the Code of State Regulations (specifically 10 CSR 10-6.060). For specific details regarding conditions, see 10 CSR 10-6.060 paragraph (12)(A)10. “Conditions required by permitting authority.”

Undercover, Inc.
Webster County (S21, T28N, R19W)

1. Emission Limitation
 A. Undercover, Inc. shall emit less than 250.0 tons of Volatile Organic Compounds (VOCs) in any consecutive 12-month period from the entire installation. See Table 1 below for equipment at the installation that emit VOCs.

 B. Undercover, Inc. shall emit less than 10.0 tons individually or 25.0 tons combined of Hazardous Air Pollutants (HAPs) in any consecutive 12-month period from the entire installation. See Table 1 for equipment at the installation that emit HAPs.

Table 1: Installation Equipment that Emit VOCs and HAPs

<table>
<thead>
<tr>
<th>Emission Points</th>
<th>Emission Point Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP-01</td>
<td>11 natural gas ovens</td>
</tr>
<tr>
<td>EP-02</td>
<td>Parts cleaning</td>
</tr>
<tr>
<td>EP-03</td>
<td>Six coatings booths and one cleaning booth</td>
</tr>
<tr>
<td>EP-04</td>
<td>Gun/Line Cleaning</td>
</tr>
<tr>
<td>EP-05</td>
<td>Glue Application</td>
</tr>
</tbody>
</table>

 C. Attachment A, Attachment B and Attachment C, or equivalent forms, such as electronic forms, approved by the Air Pollution Control Program shall be used to demonstrate compliance with Special Conditions 1.A and 1.B.

2. Control Device Requirement for the Spray Guns and Sander
 A. Undercover, Inc. shall control emissions from coatings spray guns and the sander using booths equipped with filters as specified in the permit application.

 B. The coatings booths, the sanding booth and the filters shall be operated and maintained in accordance with the manufacturer’s specifications.

 C. Visible Emissions shall be used as an indicator of the proper operation of
The permittee is authorized to construct and operate subject to the following special conditions:

1. The filters. During proper operations, no visible emissions are expected from exhausts of the filters and from the booths. The existence of visible emissions from the exhausts and booths indicates a decrease in efficiency or malfunctioning of the filters. Observations shall be made using U.S. EPA Method 22 trained observer and U.S. EPA Method 22-like procedures and shall be done in accordance with the following.
 1) Visible emissions from the exhaust and the booths shall be monitored on a daily basis when the process (spray gun or sander) is in operation.
 2) The observation shall be for a two (2) minute time period.
 3) The condition of no visible emissions is considered normal for the operation of the filters. When visible emissions are noted from the exhausts, corrective action shall be taken.

2. D. Replacement filters shall be kept on hand at all times. The filters shall be made of fibers appropriate for operating conditions expected to occur (i.e. temperature limits, acidic and alkali resistance, and abrasion resistance).

3. E. Undercover, Inc. shall maintain an operating and maintenance log for the filters which shall include the following:
 1) Incidents of malfunction, with impact on emissions, duration of event, probable cause, and corrective actions
 2) Maintenance activities, with inspection schedule, repair actions, and replacements, etc.; and
 3) The time and date of each visible emissions observation required in Special Condition 2.C., the results of each observation (i.e. whether visible emissions are observed), and the type of corrective action taken, if necessary.

3. Use of Alternative Coatings, Cleaners and Glue
 A. When considering using alternative coatings, cleaners and/or glue that are different from materials listed in the Application for Authority to Construct, Undercover, Inc. shall calculate the potential emissions of each individual HAP in all coatings, cleaners and glues, for any individual HAP with a Screening Model Action Level (SMAL) less than 10.0 tons per year.
 B. For any alternative coatings, cleaners and glue with individual HAP with SMAL less than 10.0 tons per year, Undercover, Inc. shall seek approval from the Air Pollution Control Program before use of the alternative material if the potential individual HAP emissions for the installation is equal to or greater than the SMAL.
SPECIAL CONDITIONS:
The permittee is authorized to construct and operate subject to the following special conditions:

C. Attachment D or an equivalent form shall be used to show compliance with Special Conditions 3.A and 3.B.

4. Operational Requirement
Undercover, Inc. shall keep all chemicals (i.e. coatings, cleaners, glue, etc.) it uses in sealed containers whenever the materials are not in use. Undercover, Inc. shall provide and maintain suitable, easily read, permanent markings on all chemical containers used at the installation.

5. Record Keeping and Reporting Requirements
A. Undercover, Inc. shall maintain all records required by this permit for not less than five years and shall make them available immediately to any Missouri Department of Natural Resources’ personnel upon request. These records shall include Material Safety Data Sheets (MSDS) for all materials used.

B. Undercover, Inc. shall report to the Air Pollution Control Program’s Compliance/Enforcement Section, P.O. Box 176, Jefferson City, MO 65102, no later than ten days after the end of the month during which any record required by this permit show an exceedance of a limitation imposed by this permit.
REVIEW OF APPLICATION FOR AUTHORITY TO CONSTRUCT AND OPERATE
SECTION (6) REVIEW
Project Number: 2010-10-012
Installation ID Number: 225-0045
Permit Number:

Undercover, Inc.
59 Absolute Drive
Rogersville, MO 65742

Parent Company:
THI
1901 East Ellsworth
Ann Arbor, MI 48108

Webster County (S21, T28N, R19W)

REVIEW SUMMARY

- Undercover, Inc. has applied for authority to construct six coatings booths, a cleaning booth, a sanding booth and 11 natural gas ovens.

- Hazardous Air Pollutant (HAP) emissions are expected from the proposed equipment. HAPs of concern from this process are Ethylbenzene, Xylene, Toluene, Methanol and Methyl Isobutyl Ketone.

- None of the New Source Performance Standards (NSPS) apply to the installation. 40 CFR Part 60, Standards of Performance for Automobile and Light Duty Truck Surface Coating Operations, of the NSPS does not apply to the coatings booths because they are not located at a light-duty truck assembly plant.

- None of the National Emission Standards for Hazardous Air Pollutants (NESHAPs) apply to this installation.

- None of the currently promulgated Maximum Achievable Control Technology (MACT) regulations apply to the proposed equipment.

- 40 CFR Part 63, Subpart IIII, National Emission Standards for Hazardous Air Pollutants: Surface Coating of Automobiles and Light-Duty Trucks, and Subpart PPPPP, National Emissions Standards for Hazardous Air Pollutants for Surface Coating of Plastic Parts and Products, of the MACT do not apply to this facility because this facility is not a major source for HAPs. It has accepted the limits of 10.0 tons per year of individual HAP and 25.0 tons per year of combined HAPs to keep from becoming a major source. There are conditions other than major source status that may exempt the facility from these subparts. If the facility ever asks for the removal of these HAPs limits, a determination regarding the applicability of these subparts should be made at that time.
• 40 CFR Part 63, Subpart HHHHHH, National Emission Standards for Hazardous Air Pollutants: Paint Stripping and Miscellaneous Surface Coating Operations at Area Sources, of the MACT does not apply to this facility because the installation is not an autobody refinishing operation with spray-applied surface coating operations or a spray-applied surface coatings operation that uses coatings containing chromium (Cr), lead (Pb), manganese (Mn), nickel (Ni) or cadmium (Cd). If the facility ever switches to a coating containing these HAPs, then subpart HHHHHH would apply.

• Booths and filters are being used to control the PM$_{2.5}$ and PM$_{10}$ emissions from the spray guns and sanders in this permit.

• This review was conducted in accordance with Section (6) of Missouri State Rule 10 CSR 10-6.060, Construction Permits Required. Conditioned potential emissions of VOCs are above the de minimis level.

• This installation is located in Webster County, an attainment area for all criteria pollutants.

• This installation is not on the List of Named Installations found in 10 CSR 10-6.020(3)(B), Table 2. The installation's major source level is 250 tons per year and fugitive emissions are not counted toward major source applicability.

• Ambient air quality modeling was not performed for this review. No model is currently available which can accurately predict ambient ozone concentrations caused by this installation's VOC emissions.

• Emissions testing is not required for the equipment.

• The facility shall either apply for an Intermediate Operating Permit within 90 days of equipment startup or for a Part 70 Operating Permit within one year of equipment startup.

• Approval of this permit is recommended with special conditions.

INSTALLATION DESCRIPTION

Undercover, Inc. manufactures Acrylonitrile Butadiene Styrene (ABS) plastic bed covers for pickup trucks. The ABS is thermo-formed, sanded and cleaned before being assembled into truck beds for shipping. The facility is located in Webster County (S21, T28N, R19W) and currently does not have either a construction permit or an operating permit. After this project, the facility will be a minor source for construction permits and should either apply for an Intermediate Operating Permit within 90 days of equipment startup or a Part 70 Operating Permit within one year of equipment startup.
PROJECT DESCRIPTION

Undercover, Inc. will install six coatings booths, one final cleaning booth, a sanding booth and 11 natural gas ovens. The six coatings booths include one sealer booth, three base coat (color) booths and two clear coat booths. The coatings will be manually sprayed on with high volume low pressure (HVLP) guns. The spray booths will be a full four-sided design with pneumatically operated doors to let the product in and out. While the doors are open, an air curtain will be in operation to provide complete booth isolation. The booth is a full down-draft booth where the air will be extracted through the floor. Fabric filters will be used to control PM$_{2.5}$ and PM$_{10}$ emissions. The manual sander is used to scuff the covers prior to painting them and will be equipped with a booth and filter to control particulate emissions.

The facility is expected to paint covers of various sizes. The largest size cover (48 square feet) uses 15 ounces of sealer, 36 ounces of base color and 45 ounces of clear coat. For an eight hour shift, a maximum of 200 covers will be coated, using a maximum of 23.4 gallons of sealer, 56.24 gallons of base and 70.32 gallons of clear coat. The 11 natural gas ovens have a combined design rate of 17 MMbtu/hr.

EMISSIONS/CONTROLS EVALUATION

VOC and HAPs emissions from the coatings were calculated by multiplying the maximum coatings usage by the VOC or HAPs content given in the Material Safety Data Sheets (MSDS) and assuming that all (100%) of the VOC and HAPs are emitted. Total particulate emissions were calculated assuming a 50% transfer efficiency. PM$_{10}$ emissions were calculated assuming that 80% of total particulate emissions are less than ten microns in diameter and PM$_{2.5}$ emissions were calculated assuming that 30% of total particulate emissions are less than 2.5 microns in diameter. The particle sized distributions were taken from the paper Size Distribution of Chromate Paint Aerosol Generated in a Bench-Scale Spray Booth, published by in the Annals of Occupational Hygiene in 2005.

Particulate emissions from the spray guns are controlled by booths and filters. The filters are given a control efficiency of 99.0% for both PM$_{2.5}$ and PM$_{10}$. This is the default value used by the Air Pollution Control Program. A capture efficiency of 100% was used for the booths because they are four sided enclosures (with roofs) that use air curtains to provide booth isolation when the doors are opened. Combustion emissions from the natural gas ovens were calculated by using emission factors found in The Environmental Protection Agency (EPA) document AP-42, Compilation of Air Pollutant Emission Factors, Fifth Edition, Chapter 1.4, Natural Gas Combustion (7/98). Currently, there are no emission factors for plastic sanding (scuffing), and the PM emission factor for hardboard sanding (3-07-014-80) is used to estimate emissions from the sanding booth. Due to lack of data on particle size distribution, it was assumed that all of the PM are PM$_{2.5}$ and PM$_{10}$. This emission factor is based on the use of a fabric filter. Therefore, no control device efficiency was assumed for the filter. The sand booth uses a similar air makeup system as the paint booth so a 100% capture efficiency was assumed.
Potential emissions of the application represent the potential of the new equipment, assuming continuous operation (8760 hours per year.) The facility will be using a variety of paints and coatings and were not able to provide the MSDS for all the coatings it may use. Potential emissions of the project were calculated based on the MSDS that the company was able to provide. The installation was given a 250.0 ton per year VOC limit and a 10.0/25.0 ton per year HAPs limit, which should alleviate any concern that using other coatings may increase the VOC and HAPs limit above major levels.

If the facility decides to use alternative coatings, cleaners and/or glues, it shall calculate the individual HAPs emission from all materials used at the installation, for any HAPs with Screening Model Action Level less than 10.0 tons per year. If the individual HAP emissions for all of the coatings, cleaners and glue are greater than its SMAL, the installation shall seek approval from the Air Pollution Control Program before using these alternative materials. A list of the SMAL for each HAP is given in Appendix A. This list is current as of the date of permit issuance. For an updated list of the SMAL, please contact the Air Pollution Control Program.

The existing potential emissions were calculated as part of this permit review. The only existing emissions came from the use of less than one gallon of glue per day, which contains both VOC and HAPs. None of the other equipment, including three thermo-forming machines and various assembly stations, is considered emission units.

The following table provides an emissions summary for this project.

Table 1: Emissions Summary (tons per year)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{2.5}$</td>
<td>10.0</td>
<td>N/A</td>
<td>N/D</td>
<td>1.23</td>
<td>N/A</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>15.0</td>
<td>N/A</td>
<td>N/D</td>
<td>2.10</td>
<td>N/A</td>
</tr>
<tr>
<td>SO$_x$</td>
<td>40.0</td>
<td>N/A</td>
<td>N/D</td>
<td>0.04</td>
<td>N/A</td>
</tr>
<tr>
<td>NO$_x$</td>
<td>40.0</td>
<td>N/A</td>
<td>N/D</td>
<td>7.3</td>
<td>N/A</td>
</tr>
<tr>
<td>VOC</td>
<td>40.0</td>
<td>0.75</td>
<td>N/D</td>
<td>323.50</td>
<td><250.0</td>
</tr>
<tr>
<td>CO</td>
<td>100.0</td>
<td>N/A</td>
<td>N/D</td>
<td>6.13</td>
<td>N/A</td>
</tr>
<tr>
<td>HAPs</td>
<td>10.0/25.0</td>
<td>0.36</td>
<td>N/D</td>
<td>102.81</td>
<td><10.0/25.0</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>10.0</td>
<td>N/A</td>
<td>N/D</td>
<td>17.0</td>
<td><10.0</td>
</tr>
<tr>
<td>Xylene</td>
<td>10.0</td>
<td>N/A</td>
<td>N/D</td>
<td>68.03</td>
<td><10.0</td>
</tr>
<tr>
<td>Toluene</td>
<td>10.0</td>
<td>0.25</td>
<td>N/D</td>
<td>11.27</td>
<td><10.0</td>
</tr>
<tr>
<td>1,6-Hexamethylene Diisocyanate</td>
<td>10</td>
<td>N/A</td>
<td>N/D</td>
<td>0.30</td>
<td>N/A</td>
</tr>
<tr>
<td>Methyl Isobutyl Ketone</td>
<td>10.0</td>
<td>N/A</td>
<td>N/D</td>
<td>2.46</td>
<td>N/A</td>
</tr>
<tr>
<td>Cumene</td>
<td>10.0</td>
<td>N/A</td>
<td>N/D</td>
<td>0.04</td>
<td>N/A</td>
</tr>
</tbody>
</table>

N/A = Not Applicable; N/D = Not Determined
PERMIT RULE APPLICABILITY

This review was conducted in accordance with Section (6) of Missouri State Rule 10 CSR 10-6.060, Construction Permits Required. Conditioned potential emissions of VOC are above the de minimis level.

APPLICABLE REQUIREMENTS

Undercover, Inc. shall comply with the following applicable requirements. The Missouri Air Conservation Laws and Regulations should be consulted for specific record keeping, monitoring, and reporting requirements. Compliance with these emission standards, based on information submitted in the application, has been verified at the time this application was approved. For a complete list of applicable requirements for your installation, please consult your operating permit.

GENERAL REQUIREMENTS

- Submission of Emission Data, Emission Fees and Process Information, 10 CSR 10-6.110
 The emission fee is the amount established by the Missouri Air Conservation Commission annually under Missouri Air Law 643.079(1). Submission of an Emissions Inventory Questionnaire (EIQ) is required April 1, if submitting by hardcopy, or May 1, if submitting online at https://www.dnr.mo.gov/moeis/main/login, for the previous year’s emissions. Payments are due June 1.

- Operating Permits, 10 CSR 10-6.065

- Restriction of Particulate Matter to the Ambient Air Beyond the Premises of Origin, 10 CSR 10-6.170

- Restriction of Emission of Visible Air Contaminants, 10 CSR 10-6.220

- Restriction of Emission of Odors, 10 CSR 10-6.165
STAFF RECOMMENDATION

On the basis of this review conducted in accordance with Section (6), Missouri State Rule 10 CSR 10-6.060, *Construction Permits Required*, I recommend this permit be granted with special conditions.

Chia-Wei Young
Environmental Engineer

PERMIT DOCUMENTS

The following documents are incorporated by reference into this permit:

- The Application for Authority to Construct form, dated October 1, 2010, received October 4, 2010, designating Undercover, Inc. as the owner and operator of the installation.

- Southwest Regional Office Site Survey, dated November 19, 2010.
Attachment A – VOC Compliance Worksheet

Undercover, Inc.
Webster County (S21, T28N, R19W)
Project Number: 2010-10-012
Installation ID Number: 225-0045
Permit Number: ______

This sheet covers the month of ______________ in the year ______________

Copy this sheet as needed.

<table>
<thead>
<tr>
<th>From Coatings/Cleaners Usage</th>
<th>Amount of Material Used (gal)</th>
<th>Density (lbs/gal)</th>
<th>VOC Content (Weight %)</th>
<th>VOC Emissions (Tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coatings/Cleaners/Glues Used</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\text{Total VOC Emissions from Coatings/Cleaners/Glues (tons) = \text{\ldots}}\]

<table>
<thead>
<tr>
<th>From Natural Gas Combustion</th>
<th>Fuel Usage (mmscf)</th>
<th>Emission Factors (lbs/mmscf)</th>
<th>VOC Emissions (tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other VOC Sources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Gas Combustion</td>
<td></td>
<td>5.5</td>
<td></td>
</tr>
</tbody>
</table>

\[\text{Total VOC Emissions Calculated for this Month (tons) = \text{\ldots}}\]

\[\text{Total VOC Emissions from the Previous Eleven Months (tons) = \text{\ldots}}\]

\[\text{Total VOC Emissions for the Current 12-Month Period (tons) = \text{\ldots}}\]

Note 1: VOC Emissions from each coatings/cleaner/glue calculated by using \[\text{Amount of Material Used (gal) x Density (lbs/gal) x (VOC Content (\%) / 100) + 2,000 (lbs/ton)}\]

Note 2: Total VOC Emissions from Coatings/Cleaners/Glues (tons) calculated by adding the VOC Emissions (tons) from each coating and cleaner.

Note 3: VOC Emissions from Natural Gas Combustion (tons) calculated from \[\text{[Fuel Usage (mmscf) x Emission Factor (lbs/mmscf) + 2,000 (lbs/ton)]}\]

Note 4: Total VOC Emissions Calculated for this Month (tons) calculated from adding the Total VOC Emissions from Coatings/Cleaners/Glues (tons) and the VOC Emissions (tons) from the combustion of natural gas.

Note 5: Total VOC Emissions from the Previous Eleven Months (tons) calculated by adding the Total VOC Emissions Calculated for this Month (tons) of the previous eleven Attachment A’s.

Note 6: Total VOC Emissions for the Current 12-Month Period (tons) calculated by adding the Total VOC Emissions Calculated for this Month (tons) and the Total VOC Emissions from the Previous Eleven Months (tons).

A Total of 250.0 tons per year of VOC indicates compliance
Attachment B – Combined HAP Compliance Worksheet

Undercover, Inc.
Webster County (S21, T28N, R19W)
Project Number: 2010-10-012
Installation ID Number: 225-0045
Permit Number:

This sheet covers the month of __________ in the year __________

Copy this sheet as needed.

From Coatings/Cleaners Usage

<table>
<thead>
<tr>
<th>Coatings/Cleaners/Glues Used</th>
<th>Amount of Material Used (gal)</th>
<th>Density (lbs/gal)</th>
<th>HAP Content (Weight %)</th>
<th>¹HAP Emissions (Tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

²Total Combined HAP Emissions from Coatings/Cleaners/Glues (tons) =

From Natural Gas Combustion

<table>
<thead>
<tr>
<th>Other HAP Sources</th>
<th>Fuel Usage (mmscf)</th>
<th>Emission Factors (lbs/mmscf)</th>
<th>⁴HAP Emissions (tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas Combustion</td>
<td></td>
<td>1.89</td>
<td></td>
</tr>
</tbody>
</table>

⁴Total Combined HAP Emissions Calculated for this Month (tons) =

⁵Total Combined HAP Emissions from the Previous Eleven Months (tons) =

⁶Total Combined HAP Emissions for the Current 12-Month Period (tons) =

Note 1: HAP Emissions from each coatings/cleaner/glues calculated by using [Amount of Material Used (gal) x Density (lbs/gal) x (HAP Content (%) / 100) + 2,000 (lbs/ton)]

Note 2: Total Combined HAP Emissions from Coating/Cleaner/Glues (tons) calculated by adding the HAP Emissions (tons) from each coating and cleaner.

Note 3: HAP Emissions from Natural Gas Combustion (tons) calculated from [Fuel Usage (mmscf) x Emission Factor (lbs/mmscf) + 2,000 (lbs/ton)]

Note 4: Total Combined HAP Emissions Calculated for this Month (tons) calculated from adding the Total Combined HAP Emissions from Coatings/Cleaners/Glues (tons) and the HAP Emissions (tons) from the combustion of natural gas.

Note 5: Total Combined HAP Emissions from the Previous Eleven Months (tons) calculated by adding the Total HAP Emissions Calculated for this Month (tons) of the previous eleven Attachment A’s.

Note 6: Total Combined HAP Emissions for the Current 12-Month Period (tons) calculated by adding the Total Combined HAP Emissions Calculated for this Month (tons) and the Total Combined HAP Emissions from the Previous Eleven Months (tons).

A Total of 25.0 tons per year indicates compliance
Attachment C: Monthly Individual HAP Tracking Record
Undercover, Inc.
Webster County (S21, T28N, R19W)
Project Number: 2010-10-012
Installation ID Number: 225-0045
Permit Number:

HAP Name: ____________________________ CAS No. of ________________

This sheet covers the month of _________________ in the year of ________________

Copy this sheet as needed.

<table>
<thead>
<tr>
<th>Coatings/Cleaners/Glues that Contain This Specific HAP</th>
<th>Amount of Material Used (gal)</th>
<th>Density (lbs/gal)</th>
<th>Individual HAP Content (Weight %)</th>
<th>Individual HAP Emissions (Tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^3\text{Total Individual HAP Emissions Calculated for this Month (tons) =}

\(^4\text{Total Individual HAP Emissions from the Previous Eleven Months (tons) =}

\(^5\text{Total Individual HAP Emissions for the Current 12-Month Period (tons) =}

Note 1: Individual HAP emissions from natural gas combustion are considered negligible and therefore, not included in this attachment.
Note 2: Individual HAP Emissions from each coatings/cleaner/glue calculated by using \([\text{Amount of Material Used (gal)} \times \text{Density (lbs/gal)} \times (\text{HAP Content (\%)}/100) \div 2,000(\text{lbs/ton})]\)
Note 3: Total Individual HAP Emissions for this month (tons) calculated by adding the HAP Emissions (tons) from each coating/cleaner/glue.
Note 4: Total Individual HAP Emissions from the Previous Eleven Months (tons) calculated by adding the Total HAP Emissions Calculated for this Month (tons) of the previous eleven Attachment A's.
Note 5: Total Individual HAP Emissions for the Current 12-Month Period (tons) calculated by adding the Total Individual HAP Emissions Calculated for this Month (tons) and the Total Individual HAP Emissions from the Previous Eleven Months (tons).

A Total of 10.0 tons per year indicate compliance
<table>
<thead>
<tr>
<th>Coatings/Cleaners that Contain This Specific HAP</th>
<th>Maximum Potential Application Rate (Gal/hr)</th>
<th>Density (lbs/gal)</th>
<th>Individual HAP Content (Weight %)</th>
<th>Individual HAP Potential Emissions (Tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Individual HAP Emissions from each coatings/cleaner calculated by using \[\text{Maximum Potential Application Rate (gal/hr)} \times \text{Density (lbs/gal)} \times \left(\frac{\text{HAP Content} \div 100}{100}\right) \div 2000 \text{ (lbs/ton)} \times 8,760 \text{ hrs/yr}\]

Note 2: The SMAL for this HAP can be found in Appendix A.

Note 3: Potential HAP Emission of This HAP is calculated by adding the HAP emissions from each individual coatings/cleaners/glue. If the Total Potential Emission of this HAP is greater than the SMAL, the facility shall notify the Air Pollution Control Program before using the alternative material.
Appendix A

Hazardous Air Pollutant (HAP) Screening Model Action Levels (SMAL)

<table>
<thead>
<tr>
<th>Chemical</th>
<th>CAS#</th>
<th>Emission Threshold Levels (tons/year)</th>
<th>Synonyms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaldehyde</td>
<td>75-07-0</td>
<td>9</td>
<td>Acetic Aldehyde, Aldehyde, Ethanal, Ethyl Aldehyde</td>
</tr>
<tr>
<td>Acetamide</td>
<td>60-35-5</td>
<td>1</td>
<td>Acetic Acid Amide, Ethanamide</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>75-05-8</td>
<td>4</td>
<td>Methyl Cyanide, Ethanenitrile, Cyanomethane</td>
</tr>
<tr>
<td>Acetophenone</td>
<td>98-86-2</td>
<td>1</td>
<td>Acetylbenzene, Methyl Phenyl Ketone, Hypnone</td>
</tr>
<tr>
<td>Acetylaminofluorine, [2-]</td>
<td>53-96-3</td>
<td>0.005</td>
<td>N-2-Fluorenyl Acetaminde, N-Fluroen-2-yl Acetamide, 2-Acetamideofluorene</td>
</tr>
<tr>
<td>Acrolein</td>
<td>107-02-8</td>
<td>0.04</td>
<td>Acrylaldehyde, Acrylic Aldehyde, Allyl Aldehyde, Propenal</td>
</tr>
<tr>
<td>Acrylamide</td>
<td>79-06-1</td>
<td>0.02</td>
<td>Propenamide, Acrylic Amide, Acrylaldehyde, Monomer, Ethylene-carboxamide</td>
</tr>
<tr>
<td>Acrylic Acid</td>
<td>79-10-7</td>
<td>0.6</td>
<td>Propenoic Acid, Ethylene Carboxylic Acid, Vinylformic Acid</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>107-13-1</td>
<td>0.3</td>
<td>Vinyl Cyanide, Cyanoethylene, Propenitrile</td>
</tr>
<tr>
<td>Allyl Chloride</td>
<td>107-05-1</td>
<td>1</td>
<td>1-Chloro-2-Propene, 3-Chloropropylene, Chloroallylene, Alpha-Propylene</td>
</tr>
<tr>
<td>Aminobiphenyl, [4-]</td>
<td>92-67-1</td>
<td>1</td>
<td>Biphenylene, P-Phenylaniline, Xylenylamine, 4-Aminodiphenyl, 4-Biphenylamine</td>
</tr>
<tr>
<td>Aniline</td>
<td>62-53-3</td>
<td>1</td>
<td>Aminobenzene, Phenylamine, Aniline Oil, Aminophen, Arylamine</td>
</tr>
<tr>
<td>Anisidine, [Ortho-]</td>
<td>90-04-0</td>
<td>1</td>
<td>O-Methoxyaniline</td>
</tr>
<tr>
<td>Anthracene</td>
<td>120-12-7</td>
<td>0.01</td>
<td>Anthracin, Green Oil, Paranaphthalene, Tetraolive N2G</td>
</tr>
<tr>
<td>Antimony Compounds (Notes 2, 4)</td>
<td>5</td>
<td>5</td>
<td>Elemental Antimony (CAS 7440-36-0), Antimony (Pentachloride, Tribromide, Trichloride, Trifluoride)</td>
</tr>
<tr>
<td>Antimony Pentafluoride</td>
<td>7783-70-2</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Antimony Potassium Tartrate</td>
<td>28300-74-5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Antimony Trioxide</td>
<td>1309-64-4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Antimony Trisulfide</td>
<td>1345-04-6</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Arsenic Compounds (Notes 2, 4)</td>
<td>0.005</td>
<td>5</td>
<td>Arsenic (Diethyl, Disulfide, Pentoxide, Trichloride, Trioxide, Trisulfide), Arsinine, Elemental Arsenic (CAS 7440-38-2)</td>
</tr>
<tr>
<td>Asbestos</td>
<td>1332-21-4</td>
<td>0</td>
<td>Chrysotile, Amosite, Crocidolite, Tremolite, Anthophyllite, Actinolite</td>
</tr>
<tr>
<td>Benz(a)Anthracene</td>
<td>56-55-3</td>
<td>0.01</td>
<td>Benzanthrene, Benzo(a)anthracene, Benzphenanthrene, Naphthanthracene</td>
</tr>
<tr>
<td>Benzene</td>
<td>71-43-2</td>
<td>2</td>
<td>Benzol, Phenyl Hydride, Coal Naphtha, Phene, Benxole, Cyclohexatriene</td>
</tr>
<tr>
<td>Chemical</td>
<td>CAS Number</td>
<td>PEL</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>Benzidine</td>
<td>92-87-5</td>
<td>0.0003</td>
<td>4,4’-Biphenyldiamine, P-Diaminodiphenyl, 4,4’-Diaminobiphenyl, Benzidine Base</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>50-32-8</td>
<td>0.01</td>
<td>3,4-Benzpyrene</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>205-992</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>107-08-9</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Benzotrichloride</td>
<td>98-07-7</td>
<td>0.006</td>
<td>Benzoic Trichloride, PhenylChloroform, Trichloromethylbenzene</td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>100-44-7</td>
<td>0.1</td>
<td>Alpha-Chlorotoluene, Tolyl Chloride</td>
</tr>
<tr>
<td>Beryllium Compounds (Notes 2, 4)</td>
<td></td>
<td>0.008</td>
<td>Elemental Beryllium (CAS 7440-41-7), Glucinum</td>
</tr>
<tr>
<td>Beryllium Salts</td>
<td></td>
<td>0.00002</td>
<td></td>
</tr>
<tr>
<td>Biphenyl, [1, 1-]</td>
<td>92-52-4</td>
<td>10</td>
<td>Diphenyl, Phenylbenzene</td>
</tr>
<tr>
<td>Bis(Chloroethyl)Ether</td>
<td>111-44-4</td>
<td>0.06</td>
<td>Dichloroethyl ether, Dichloroether, Dichloroethyl Oxide, BCEE</td>
</tr>
<tr>
<td>Bis(Chloromethyl)Ether</td>
<td>542-88-1</td>
<td>0.0003</td>
<td>BCME, Sym-Dichloromethyl ether, Dichloromethyl Ether, Oxybis-(Chloromethane)</td>
</tr>
<tr>
<td>Bromoform</td>
<td>75-25-2</td>
<td>10</td>
<td>Tribromomethane, Methyl Tribromide</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>74-83-9</td>
<td>10</td>
<td>Methyl Bromide</td>
</tr>
<tr>
<td>Butadiene, [1,3-]</td>
<td>106-99-0</td>
<td>0.07</td>
<td>Biethylene, Bivinyl, Butadiene Monomer, Divinyl Erythrene, Vinylylene</td>
</tr>
<tr>
<td>Butoxylethanol Acetate [2-]</td>
<td>112-07-2</td>
<td>5</td>
<td>2-Butoxyethyl Acetate, Butyl Cellosolve Acetate, Butyl Glycol Acetate</td>
</tr>
<tr>
<td>Butylene Oxide, [1,2-]</td>
<td>106-88-7</td>
<td>1</td>
<td>1,2-Epoxybutane, 1-Butene Oxide, 1,2-Butene Oxide</td>
</tr>
<tr>
<td>Cadmium Compounds (Notes 2, 4)</td>
<td></td>
<td>0.01</td>
<td>Cadmium (Dust, Fume, Acetate, Chloride, Fluoride, Oxide, Sulfate, Sulfide), Elemental Cadmium (CAS 7440-43-9)</td>
</tr>
<tr>
<td>Calcium Cyanamide</td>
<td>156-62-7</td>
<td>10</td>
<td>Nitrolime, Calcium Carbimide, Cyanamide</td>
</tr>
<tr>
<td>Caprolactam (Delisted)</td>
<td>105-60-2</td>
<td>10</td>
<td>Hexahydro-2H-Azepin-2-One, Aminocaproic Lactam, Epsilon-Caprolactam</td>
</tr>
<tr>
<td>Captan</td>
<td>133-06-2</td>
<td>10</td>
<td>N-Trichloromethylmercapto-4-Cyclohexene-1,2-Dicarboximide</td>
</tr>
<tr>
<td>Carbaryl</td>
<td>63-25-2</td>
<td>10</td>
<td>1-Naphthyl-N-Methylcarbamate</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>75-15-0</td>
<td>1</td>
<td>Carbon Bisulfide, Dithiocarboxenic Anhydride</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>56-23-5</td>
<td>1</td>
<td>Tetrachloromethane, Perchloromethane</td>
</tr>
<tr>
<td>Carbonyl Sulfide</td>
<td>463-58-1</td>
<td>5</td>
<td>Carbon Oxide Sulfide, Carbonoxysulfide</td>
</tr>
<tr>
<td>Catechol</td>
<td>120-80-9</td>
<td>5</td>
<td>Pyrocatechol, O-Dihydroxybenzene</td>
</tr>
<tr>
<td>Chloramben</td>
<td>133-90-4</td>
<td>1</td>
<td>3-Amino-2,5-Dichlorobenzoic Acid, Amiben, Amiben*, Vegiben* (*Trademark)</td>
</tr>
<tr>
<td>Chlorodane</td>
<td>57-74-9</td>
<td>0.01</td>
<td>ENT9932, Octachlor</td>
</tr>
<tr>
<td>Chlorine</td>
<td>7782-50-5</td>
<td>0.1</td>
<td>Bertholite</td>
</tr>
<tr>
<td>Chloroacetic Acid</td>
<td>79-11-8</td>
<td>0.1</td>
<td>Monochloroacetic Acid, Chloroethanoic Acid</td>
</tr>
<tr>
<td>Chloroacetophenone, [2-]</td>
<td>532-27-4</td>
<td>0.06</td>
<td>Phenacyl Chloride, Chloromethyl Phenyl Ketone, Tear Gas, Mace</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>108-90-7</td>
<td>10</td>
<td>Benzene Chloride, Monochlorobenzene, Chlorobenzol, Phenyl Chloride, MCB</td>
</tr>
<tr>
<td>Chlorobenzilate</td>
<td>510-15-6</td>
<td>0.4</td>
<td>Ethyl-4,4’-Dichlorobenzilate, Ethyl-4,4’Dichlorophenyl Glycollate</td>
</tr>
<tr>
<td>Chemical Name</td>
<td>CAS Number</td>
<td>Concentration</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>67-66-3</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Chloromethyl Methyl Ether</td>
<td>107-30-2</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Chromium (VI) Compounds (Notes 4, 10)</td>
<td></td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Chromium Compounds (Notes 4, 10)</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Coke Oven Emissions</td>
<td>8007-45-2</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Cresol, [Meta-]</td>
<td>108-39-4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cresol, [Ortho-]</td>
<td>95-48-7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cresol, [Para-]</td>
<td>106-44-5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cresols (Mixed Isomers)</td>
<td>1319-77-3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cumene</td>
<td>98-82-8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Cyanide Compounds (Notes 7)</td>
<td>20-09-7</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>DDE (p,p'-Dichlordiphenyl Dichloroethylene)</td>
<td>72-55-9</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Di(2-Ethylhexyl)Phthalate, (DEHP)</td>
<td>117-81-7</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Diaminotoluene, [2,4-]</td>
<td>95-80-7</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Diazomethane</td>
<td>334-88-3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dibenz(a,h)anthracene</td>
<td>53-70-3</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Dioxins/Furans (Note 9)</td>
<td></td>
<td>6.E-7</td>
<td></td>
</tr>
<tr>
<td>Dibenzofuran</td>
<td>132-64-9</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Lead, Eilithium, Trioxide, Phosphate, Potassium, Zinc
- Hydrogen Cyanide (CAS 74-90-8), Potassium Cyanide (CAS 151-50-8), Sodium Cyanide (CAS 143-33-9), Copper Cyanide (CAS 544-92-3), Cupricin, Cuprous Cyanide, Chlorine Cyanide (CAS 506-77-4), Cyanogen Chloride, Chlorocyanogen, Chlorcyan, Barium Cyanide (CAS 542-62-1), Cyanogen (CAS 460-19-5), Cyanogen Bromide (CAS 506-69-3), Potassium Silver Cyanide (CAS 506-61-6), Silver Cyanide (CAS 506-64-9), Zinc Cyanide (CAS 557-21-1), and other cyanide salts
- Bis(2-ethylhexyl)Phthalate, Di(2-Ethylhexyl)Phthalate, DOP, Di-Sec-Octyl Phthalate
- 2,4-Toluene Diamine, 3-Amino-Para-Toluidine, 5-Amino-Ortho-Toluidine
- Azimethylene, Diazirine
<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>CAS Number</th>
<th>IU (mg/kg)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dibromo-3-Chloropropane, [1,2-]</td>
<td>96-12-8</td>
<td>0.01</td>
<td>DBCP</td>
</tr>
<tr>
<td>Dibromomethane, [1,2-]</td>
<td>106-93-4</td>
<td>0.1</td>
<td>Ethylene Dibromide, Ethylene Bromide, Sym-Dibromoethane</td>
</tr>
<tr>
<td>DIBUTYL PHTHALATE</td>
<td>84-74-2</td>
<td>10</td>
<td>DBP, DIBUTYL 1,2-Benzenedicarboxylate, DI-N-Butylphthalate</td>
</tr>
<tr>
<td>DICHLOOROBENZENE, [1,4-]</td>
<td>106-46-7</td>
<td>3</td>
<td>1,4-Dichloro-P-DCB, 1,4-DCB, PDB, PDCB</td>
</tr>
<tr>
<td>DICHLOOROBENZIDENE, [3,3-]</td>
<td>91-94-1</td>
<td>0.2</td>
<td>4,4’-Diamino-3,3’-Dichlorobiphenyl, 3,3’-Dichlorobiphenyl-4,4’-Diamine, DCB</td>
</tr>
<tr>
<td>DICHLOOROETHANE, [1,1-]</td>
<td>75-34-3</td>
<td>1</td>
<td>Ethylidene Dichloride, 1,1-Ethylidene Dichloride, Asymmetrical Dichlorethane</td>
</tr>
<tr>
<td>DICHLOOROETHANE, [1,2-]</td>
<td>107-06-2</td>
<td>0.8</td>
<td>Ethylene Dichloride, Glycol Dichloride, Ethylene Chloride</td>
</tr>
<tr>
<td>DICHLOOROETHYLENE, [1,1-]</td>
<td>75-35-4</td>
<td>0.4</td>
<td>Vinylidene Chloride, DCE, VDC</td>
</tr>
<tr>
<td>DICHLOOROMETHANE</td>
<td>75-90-2</td>
<td>10</td>
<td>Methylene Chloride, Methane Dichloride</td>
</tr>
<tr>
<td>DICHLOOROPHENOXYACETIC ACID, [2,4-] (Note 6)</td>
<td>94-75-7</td>
<td>10</td>
<td>2,4-D Acid</td>
</tr>
<tr>
<td>DICHLOOROPROPANE, [1,2-]</td>
<td>78-87-5</td>
<td>1</td>
<td>Propylene Dichloride</td>
</tr>
<tr>
<td>DICHLOOROPROPENE [1,3-]</td>
<td>542-75-6</td>
<td>1</td>
<td>1,3-Dichloropropylene, Alpha-Chlorallyl Chloride</td>
</tr>
<tr>
<td>DICHLOROVOS</td>
<td>62-73-7</td>
<td>0.2</td>
<td>DDVP, 2,2-Dichlorovinylmethylphosphate</td>
</tr>
<tr>
<td>DIOETANOLAMINE</td>
<td>11-42-2</td>
<td>5</td>
<td>Bis(2-Hydroxyethyl)Amine, 2,2’-Dihydroxydiethylamine, Di(2-Hydroxyethyl)Amine</td>
</tr>
<tr>
<td>DIETHYL SULFATE</td>
<td>64-67-5</td>
<td>1</td>
<td>Diethyl Ester Sulfuric Acid, Ethyl Sulfate</td>
</tr>
<tr>
<td>DIETHYLENE GLYCOL MONOBUTYL ETHER</td>
<td>112-34-5</td>
<td>5</td>
<td>2-(2-Butoxyethoxy)ethanol, Butyl Carbitol, Butyl Digol</td>
</tr>
<tr>
<td>DIMETHOXYBENZIDINE, [3,3-]</td>
<td>119-90-4</td>
<td>0.1</td>
<td>Fast Blue B Base, Dianisidine, O-Dianisidine</td>
</tr>
<tr>
<td>DIMETHYL BENZIDINE, [3,3-]</td>
<td>119-93-7</td>
<td>0.008</td>
<td>O-Tolidine, BIANISIDINE, 4,4’-Diamino-3,3’-Dichlorobiphenyl, Diaminoditoyl</td>
</tr>
<tr>
<td>DIMETHYL CARBAMOYL CHLORIDE</td>
<td>79-44-7</td>
<td>0.02</td>
<td>DMCC, Chloroformic Acid Dimethyl Amide, Dimethyl Carbamyl Chloride</td>
</tr>
<tr>
<td>DIMETHYL FORMAMIDE</td>
<td>68-12-2</td>
<td>1</td>
<td>DMF, Formylidimethylamine</td>
</tr>
<tr>
<td>DIMETHYL HYDRAZINE, [1,1-]</td>
<td>57-14-7</td>
<td>0.008</td>
<td>Unsymmetrical Dimethylhydrazine, UDMH, Dimazine</td>
</tr>
<tr>
<td>DIMETHYL PHthalate*</td>
<td>131-11-3</td>
<td>10</td>
<td>Phthalic Acid, Dimethyl Ester, Dimethyl 1,2-Benzenedicarboxylate, DMP</td>
</tr>
<tr>
<td>DIMETHYL SULFATE</td>
<td>77-78-1</td>
<td>0.1</td>
<td>Sulfuric Acid Dimethyl Ester, Methyl Sulfate, DMS</td>
</tr>
<tr>
<td>DIMETHYLAMINOAZOBENZENE, [4-]</td>
<td>60-11-7</td>
<td>1</td>
<td>N,N-Dimethyl-P-Phenylazo-Aniline, Benzeneazo Dimethylaniline</td>
</tr>
<tr>
<td>DIMETHYLANILINE, [N,N]</td>
<td>121-69-7</td>
<td>1</td>
<td>N,N-Diethyl Aniline, N,N-Dimethylphenylamine, DMA</td>
</tr>
<tr>
<td>DINITRO-O-CRESOL, [4,6-] (Note 6)</td>
<td>534-52-1</td>
<td>0.1</td>
<td>DNOC, 3,5-Dinitro-O-Cresol, 2-Methyl-4,6-Dinitrophenol</td>
</tr>
<tr>
<td>DINITROPHENOL, [2,4-]</td>
<td>51-28-5</td>
<td>1</td>
<td>DNP</td>
</tr>
<tr>
<td>DINITROTOLUENE, [2,4-]</td>
<td>121-14-2</td>
<td>0.02</td>
<td>Dinitrotoluol, DNT, 1-Methyl-2,4-Dinitrobenzene</td>
</tr>
<tr>
<td>DIOXANE, [1,4-]</td>
<td>123-91-1</td>
<td>6</td>
<td>1,4-Diethyleneoxide, Diethylene Ether, P-Dioxane</td>
</tr>
<tr>
<td>DIPHENYLHYDRAZINE, [1,2-]</td>
<td>122-66-7</td>
<td>0.09</td>
<td>Hydrazobenzene, N.N’-Diphenylhydrazine, N.N’-Bianiline, 1,1’-Hydrobibenzene</td>
</tr>
<tr>
<td>DIPHENYLmethane DIISOCYANATE, [4,4-]</td>
<td>101-68-8</td>
<td>0.1</td>
<td>Methylene Bis(Phenylisocyanate), Methylene Diphenyl Diisocycante, MDI</td>
</tr>
<tr>
<td>Chemical Name</td>
<td>CAS Number</td>
<td>K Value</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>Epichlorohydrin</td>
<td>106-89-8</td>
<td>2</td>
<td>1-Chloro-2,3-Epoxypropane, EPI, Chloropropylene Oxide, Chloromethylxirane</td>
</tr>
<tr>
<td>Ethoxy Ethanol, [2-]</td>
<td>110-80-5</td>
<td>10</td>
<td>Cellosolve Solvent, Ethylene Glycol Monoethyl Ether</td>
</tr>
<tr>
<td>Ethoxyethyl Acetate, [2-]</td>
<td>111-15-9</td>
<td>5</td>
<td>Cellosolve Acetate, EGEEA, Ethylene Glycol Monoethyl Acetate</td>
</tr>
<tr>
<td>Ethyl Acrylate</td>
<td>140-88-5</td>
<td>1</td>
<td>Ethyl Propenoate, Acrylic Acid Ethyl Ester</td>
</tr>
<tr>
<td>Ethyl Benzene</td>
<td>100-41-4</td>
<td>10</td>
<td>Ethylbenzol, Phenylethane, EB</td>
</tr>
<tr>
<td>Ethyl Chloride</td>
<td>75-00-3</td>
<td>10</td>
<td>Chloroethane, Monochloroethane, Hydrochloric Ether</td>
</tr>
<tr>
<td>Ethylene Glycol</td>
<td>107-21-1</td>
<td>10</td>
<td>1,2-Ethanediol, Glycol Alcohol, Glycol, EG</td>
</tr>
<tr>
<td>Ethylene Glycol Monobutyl Ether (Delisted)</td>
<td>111-76-2</td>
<td>5</td>
<td>Butyl Cellosolve, 2-Butoxyethanol</td>
</tr>
<tr>
<td>Ethylene Glycol Monohexyl Ether</td>
<td>112-25-4</td>
<td>5</td>
<td>Glycol monohexyl Ether, N-Hexyl Glycol, EGHE, Hexyl Cellosolve</td>
</tr>
<tr>
<td>Ethylene Imine (Aziridine)</td>
<td>151-56-4</td>
<td>0.003</td>
<td>Azacyclopropane, Dimethyleimine, Ethylenimine, Vinylamine, Azirane</td>
</tr>
<tr>
<td>Ethylene Oxide</td>
<td>75-21-8</td>
<td>0.1</td>
<td>1,2-Epoxyethane, Oxirane, Dimethylene Oxide, Anprolene</td>
</tr>
<tr>
<td>Ethylene Thiourea</td>
<td>96-45-7</td>
<td>0.6</td>
<td>2-Imidazolidinethione, ETU</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>50-00-0</td>
<td>2</td>
<td>Oxyethylene, Formic Aldehyde, Methanal, Methylene Oxide, Oxomethane</td>
</tr>
<tr>
<td>Glycol Ethers (Ethylene Glycol Ethers)(Notes 3, 5)</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycol Ether (Diethylene Glycol Ethers)(Notes 3, 5)</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td>76-44-8</td>
<td>0.02</td>
<td>1,4,5,6,7,8,8A-Heptachloro-3A,4,7,7A-Tetrahydro-4,7-Methanoindiene</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>118-74-1</td>
<td>0.01</td>
<td>Perchlorobenzene, HCB, Pentachlorophenyl Benzene, Phenyl Perchloryl</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>87-68-3</td>
<td>0.9</td>
<td>Perchlorobutadiene, 1,3-Hexachlorobutadiene, HCB</td>
</tr>
<tr>
<td>Hexachlorocyclohexane, [Alpha-]</td>
<td>319-84-6</td>
<td>0.01</td>
<td>Benzene Hexachloride-Alpha isomer, ENT-9232, Alpha-Lindane, Alpha-BHC</td>
</tr>
<tr>
<td>Hexachlorocyclohexane, [Beta-]</td>
<td>319-85-7</td>
<td>0.01</td>
<td>Trans-Alpha Benzenehexachloride, Beta-BHC, Beta-Lindane, Beta-Hexachlorobenzene</td>
</tr>
<tr>
<td>Hexachlorocyclohexane, [Delta-]</td>
<td>319-86-8</td>
<td>0.01</td>
<td>Delta-Benzene Hexachloride, Delta-BHC, Delta-Lindane, ENT-9236</td>
</tr>
<tr>
<td>Hexachlorocyclohexane, [Technical]</td>
<td>608-73-1</td>
<td>0.01</td>
<td>Benzene hexachloride, HCH, BHC, ENT-8601, Gammexane, Compound-666</td>
</tr>
<tr>
<td>Hexachlorocyclopentadiene</td>
<td>77-47-4</td>
<td>0.1</td>
<td>HCCPD, HEX</td>
</tr>
<tr>
<td>Hexachloroethane</td>
<td>67-72-1</td>
<td>5</td>
<td>Perchloroethane, Carbon Hexachloride, HCE, 1,1,1,2,2,2-Hexachloroethane</td>
</tr>
<tr>
<td>Hexamethylene Diisocyanate, 1,6-</td>
<td>822-06-0</td>
<td>0.02</td>
<td>1,6-Diisocyanatohexane, 1,6-Hexanediol Diisocyanate</td>
</tr>
<tr>
<td>Hexamethylphosphoramide</td>
<td>680-31-9</td>
<td>0.01</td>
<td>Hexamethylphosphoric Triamide, HEMPA, Hexametapol, Hexamethylphoramide</td>
</tr>
<tr>
<td>Hexane</td>
<td>110-54-3</td>
<td>10</td>
<td>Hexane, NCI-c60571</td>
</tr>
<tr>
<td>Hydrazine</td>
<td>302-01-2</td>
<td>0.004</td>
<td>Methylhydrazine, Diamide, Diamine, Hydrazine Base</td>
</tr>
<tr>
<td>Hydrogen Chloride</td>
<td>7647-01-0</td>
<td>10</td>
<td>Hydrochloric Acid, Muratic Acid, Anhydrous Hydrochloric Acid</td>
</tr>
<tr>
<td>Chemical Name</td>
<td>CAS Number</td>
<td>PPM</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>-----</td>
<td>--</td>
</tr>
<tr>
<td>Hydrogen Fluoride</td>
<td>7664-39-3</td>
<td>0.1</td>
<td>Hydrofluoric Acid Gas, Fluorhydric Acid Gas, Anhydrous Hydrofluoric Acid</td>
</tr>
<tr>
<td>Hydroquinone</td>
<td>123-31-9</td>
<td>1</td>
<td>Quinol, Hydroquinol, P-Diphenol, 1,4-Benzenediol, Hydrochinone, Arctuvín</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)Pyrene</td>
<td>193-39-5</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Isophorone</td>
<td>78-59-1</td>
<td>10</td>
<td>3,3,5-Trimethyl-2-Cyclohexene-1-One, Trimethylcyclohexene, Isoacetophorone</td>
</tr>
<tr>
<td>Lead Compounds (Notes 2, 4)</td>
<td>20-11-1</td>
<td>0.01</td>
<td>Lead (Arsenate, Chloride, Fluoride, Iodide, Nitrate, Sulfate, Sulfide), Lead Acetate (CAS 301-04-2), Lead Subacetate (CAS 13335-32-6), Tetraethyl lead (CAS 78-00-2)</td>
</tr>
<tr>
<td>Lindane [Gamma-Hexachlorocyclohexane] (Notes 3, 5)</td>
<td>58-89-9</td>
<td>0.01</td>
<td>Benzene Hexachloride – Gamma Isomer</td>
</tr>
<tr>
<td>Maleic Anhydride</td>
<td>108-31-6</td>
<td>1</td>
<td>2,5-Furanediene, Cis-Butenedioic Anhydride, Toxilic Anhydride</td>
</tr>
<tr>
<td>Manganese Compounds (Notes 2, 4)</td>
<td>20-12-2</td>
<td>0.8</td>
<td>Manganese (Acetate, Chloride, Dioxide, (II)-Oxide, (III)-Oxide, (II)-Sulfate), MANEB (CAS 12427-38-2), Elemental Manganese (CAS 7439-96-5), Methylenebiphenyl Manganese (CAS 12108-13-3)</td>
</tr>
<tr>
<td>Mercury Compounds (Notes 2, 4)</td>
<td>20-13-3</td>
<td>0.01</td>
<td>Mercury (Chloride, Cyanide, (I,II)-[Bromide, Iodide, Nitrate, Sulfate, Oxide], Elemental Mercury (CAS 7439-97-6), Coll,oidal Mercury, Quick Silver, NCI-c60399, (Alkyl & Aryl), Methyl Mercury (CAS 22967-92-6), Phenyl Mercuric Acetate (CAS 62-38-4)</td>
</tr>
<tr>
<td>Methanol</td>
<td>67-56-1</td>
<td>10</td>
<td>Methyl Alcohol, Carbinol, Wood Alcohol, Wood Spirit</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>72-43-5</td>
<td>10</td>
<td>2,2-Bis(P-Methoxyphenyl)-1,1,1-Trichloroethane, Dimethoxy-DDT</td>
</tr>
<tr>
<td>Methoxy Ethanol, [2-]</td>
<td>108-86-4</td>
<td>10</td>
<td>Ethylene Glycol Monomethyl Ether, Methol Cellosolve</td>
</tr>
<tr>
<td>Methyl Chloride</td>
<td>74-87-3</td>
<td>10</td>
<td>Chloromethane, Monochloromethane</td>
</tr>
<tr>
<td>Methyl Ethyl Ketone (Delisted)</td>
<td>78-93-3</td>
<td>1</td>
<td>2-Butanone, MEK, Butanone, Ethyl Methyl Ketone</td>
</tr>
<tr>
<td>Methyl Hydrazine</td>
<td>60-34-4</td>
<td>0.06</td>
<td>Monomethylhydrazine, Hydrozomethane, 1-Methylhydrazine</td>
</tr>
<tr>
<td>Methyl Iodide</td>
<td>74-88-4</td>
<td>1</td>
<td>Idomethane</td>
</tr>
<tr>
<td>Methyl Isobutyl Ketone</td>
<td>108-10-1</td>
<td>10</td>
<td>Hexone, 4-Methyl-2-Pentanone, Isobutyl Methyl Ketone, MIBK</td>
</tr>
<tr>
<td>Methyl Isocyanate</td>
<td>624-83-9</td>
<td>0.1</td>
<td>Isocyanatomethane, Isocyanic Acid, Methyl Ester</td>
</tr>
<tr>
<td>Methyl Methacrylate</td>
<td>80-62-6</td>
<td>10</td>
<td>Methyl-2-Methyl-2-Propenoate, Methacrylic Acid, Methyl Ester, MME</td>
</tr>
<tr>
<td>Methyl Tert-Butyl Ether</td>
<td>12108-13-3</td>
<td>10</td>
<td>MTBE</td>
</tr>
<tr>
<td>Methylenebiphenyl Manganese</td>
<td>12108-13-3</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Methylenedi(2-Chloroaniline), [4,4-]</td>
<td>101-14-4</td>
<td>0.2</td>
<td>Curene, MOCA, 4,4’-Diamino-3,3’-Dichlorodiphenylmethane</td>
</tr>
<tr>
<td>Methylenedianiline, [4,4-]</td>
<td>101-77-9</td>
<td>1</td>
<td>4,4’-Diaminodiphenylmethane, DDM, MDA, Bis(4-Aminophenyl)Methane, DAPM</td>
</tr>
<tr>
<td>Mineal Fibers (Notes 1, 2, 5)</td>
<td>91-20-3</td>
<td>10</td>
<td>Naphthalin, Moth Flake, Tar Caphor, White Tar, Moth Balls</td>
</tr>
<tr>
<td>Naphthylamine [Alpha-]</td>
<td>134-32-7</td>
<td>0.01</td>
<td>1-Naphthylamine, 1-Aminonaphthalene, Naphthalalidine</td>
</tr>
<tr>
<td>Naphthylamine, [Beta-]</td>
<td>91-59-8</td>
<td>0.01</td>
<td>2-Aminonaphthalene, 6-Naphthylamine, 2-Naphthylamine Mustard</td>
</tr>
<tr>
<td>Chemical Name</td>
<td>CAS Number</td>
<td>PPM</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>Nickel Carbonyl</td>
<td>13463-39-3</td>
<td>0.1</td>
<td>Nickel Tetracarbonyl</td>
</tr>
<tr>
<td>Nickel Compounds (Notes 2, 4)</td>
<td></td>
<td>1</td>
<td>Nickel (Acetate, Ammonium Sulfate, Chloride, Hydroxide, Nitrate, Oxide, Sulfate), Nickel Oxide (CAS 1313-99-1), Nickel Oxide (CAS 1320-72-2), Nickel Subsulfide (CAS 12035-72-2), Elemental Nickel (CAS 7440-02-0), Nickel Carbonyl (CAS 13463-39-3)</td>
</tr>
<tr>
<td>Nickel Refinery Dust</td>
<td>12035-72-2</td>
<td>0.08</td>
<td>Nickel Dust (CAS 7440-02-0), Nickel Particles</td>
</tr>
<tr>
<td>Nickel Subsulfide</td>
<td></td>
<td>0.04</td>
<td>Nickel Sulphide, Heazlewoodite, Nickel Tribadisulphide</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>98-95-3</td>
<td>1</td>
<td>Nitrobenzoi, Oil of Mirbane, Oil of Bitter Almonds</td>
</tr>
<tr>
<td>Nitrobiphenyl, [4-]</td>
<td>92-93-3</td>
<td>1</td>
<td>4-Nitrodiphenyl, P-Nitrobiphenyl, P-Nitrophenyl, PNB</td>
</tr>
<tr>
<td>Nitrophenol, [4-]</td>
<td>100-02-7</td>
<td>5</td>
<td>4-Hydroxynitrobenzene, Para-Nitrophenol</td>
</tr>
<tr>
<td>Nitropropane, [2-]</td>
<td>79-46-9</td>
<td>1</td>
<td>Dimethylaminomethane, Sec-Nitropropane, Isonitropropane, Nitroisopropene</td>
</tr>
<tr>
<td>Nitrosodimethylamine, [N-]</td>
<td>62-75-9</td>
<td>0.001</td>
<td>Dimethylaminomethane, DMN, DMNA</td>
</tr>
<tr>
<td>Nitrosomorpholine, [N-]</td>
<td>59-89-2</td>
<td>1</td>
<td>4-Nitrosomorpholine</td>
</tr>
<tr>
<td>Nitroso-N-MethylUrea, [N-]</td>
<td>684-93-5</td>
<td>0.0002</td>
<td>N-Methyl-N-Nitrosourea, N-Nitroso-N-Methylcarbamide</td>
</tr>
<tr>
<td>Octachloronaphthalene</td>
<td>2234-13-1</td>
<td>0.01</td>
<td>Halowax 1051</td>
</tr>
<tr>
<td>Parathion</td>
<td>56-38-2</td>
<td>0.1</td>
<td>DNTP, Monothiophosphate, Diethyl-P-Nitrophenyl</td>
</tr>
<tr>
<td>PCB (Polychlorinated Biphenyls)</td>
<td>1336-36-3</td>
<td>0.009</td>
<td>Aroclors</td>
</tr>
<tr>
<td>Pentachloronitrobenzene</td>
<td>82-68-8</td>
<td>0.3</td>
<td>Quintobenzene, PCNB, Quiniozene</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>87-86-5</td>
<td>0.7</td>
<td>PCP, Penchlorol, Pentachlorophenene, 2,3,4,5,6-Pentachlorophenol</td>
</tr>
<tr>
<td>Phenol</td>
<td>108-95-2</td>
<td>0.1</td>
<td>Carboxylic Acid, Phenic Acid, Phenyl Acid, Hydrate, Hydroxybenzene</td>
</tr>
<tr>
<td>Phenylenediamine, [para-]</td>
<td>106-50-3</td>
<td>10</td>
<td>P-Aminoaniline, 1,4-Diaminobenzene, Benzenediamine, Para</td>
</tr>
<tr>
<td>Phosgene</td>
<td>75-44-5</td>
<td>0.1</td>
<td>Carbonyl Chloride, Carbon Oxychloride, Carbonic Acid Dichloride</td>
</tr>
<tr>
<td>Phosphine</td>
<td>7803-51-2</td>
<td>5</td>
<td>Hydrogen Phosphide, Phosphoretted Hydrogen, Phosphorus Tritydride</td>
</tr>
<tr>
<td>Phosphorous (Yellow or White)</td>
<td>7723-14-0</td>
<td>0.1</td>
<td>Common Sense Cockroach and Rate Preparations</td>
</tr>
<tr>
<td>Phthalic Anhydride</td>
<td>85-44-9</td>
<td>5</td>
<td>Phthalic Acid Anhydride, Benzene-O-Dicarboxylic Acid Anhydride, Phthalandione</td>
</tr>
<tr>
<td>Polycyclic Organic Matter (Notes 3, 5)</td>
<td>TP15</td>
<td>0.01</td>
<td>POM, PAH, Polyaromatic Hydrocarbons,</td>
</tr>
<tr>
<td>Propane Sultone, [1,3-]</td>
<td>1120-71-4</td>
<td>0.03</td>
<td>1,2-Oxathiolane-2,2-Dioxide, 3-Hydroxy-1-Propanesulphonic Acid Sultone</td>
</tr>
<tr>
<td>Propiolactone, [Beta-]</td>
<td>57-57-8</td>
<td>0.1</td>
<td>2-Oxetanone, Propiolactone, BPL, 3-Hydroxy-B-Lactone-Propanoic Acid</td>
</tr>
<tr>
<td>Propionaldehyde</td>
<td>123-38-6</td>
<td>5</td>
<td>Propanal, Propyl Aldehyde, Propionic Aldehyde</td>
</tr>
<tr>
<td>Propoxur [Baygon]</td>
<td>114-26-1</td>
<td>10</td>
<td>O-Isopropoxyphenyl Methylcarbamate, 2-((1-Methyloxy)Phenol Methylcarbamate</td>
</tr>
<tr>
<td>Propylene Oxide</td>
<td>75-56-9</td>
<td>5</td>
<td>1,2-Epoxypropane, Methylene Oxide, Methyl Oxirane, Propene Oxide</td>
</tr>
<tr>
<td>Substance Description</td>
<td>CAS Number</td>
<td>EC Number</td>
<td>Code</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>Propyleneimine, [1,2-]</td>
<td>75-55-8</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>Quinoline</td>
<td>91-22-5</td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td>Quinone</td>
<td>016-51-4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Radionuclides</td>
<td>(note 9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium Compounds (Notes 2, 4)</td>
<td>7782-49-2</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Styrene</td>
<td>100-42-5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Styrene Oxide</td>
<td>96-09-3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Tetrachlorodibenzo-P-Dioxin,[2,3,7,8] (Note 9)</td>
<td>1746-01-6</td>
<td>6E-7</td>
<td>TCDD</td>
</tr>
<tr>
<td>Tetrachloroethane, [1,1,2,2-]</td>
<td>79-34-5</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>127-18-4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Titanium Tetrachloride</td>
<td>7550-45-0</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>108-88-3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Toluene Diisocyanate, [2,4-]</td>
<td>584-84-9</td>
<td>0.1</td>
<td>TDI, Tolyene Disoccyante, Diisocyanatolene</td>
</tr>
<tr>
<td>Toluidine, [Ortho-]</td>
<td>95-53-4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Toxaphene</td>
<td>8001-35-2</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Trichlorobenzene [1,2,4-]</td>
<td>120-82-1</td>
<td>10</td>
<td>Umstym-Trichlorobenzene</td>
</tr>
<tr>
<td>Trichloroethane, [1,1,1-]</td>
<td>71-55-6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Trichloroethane, [1,1,2-]</td>
<td>79-00-5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>79-01-6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Trichlorophenol, [2,4,5-]</td>
<td>95-95-4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Trichlorophenol, [2,4,6-]</td>
<td>88-06-2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Triethylamine*</td>
<td>121-44-8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Trifluralin</td>
<td>1582-09-8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Trimethylpentane, [2,2,4-]</td>
<td>540-84-1</td>
<td>5</td>
<td>Isobutyltrimethylthlane, Isocarbonate</td>
</tr>
<tr>
<td>Urethane [Ethyl Carbamate]</td>
<td>51-79-6</td>
<td>0.8</td>
<td>Ethyl Urethane, O-Ethylurethane, Leucothane, NSC 746, Urethan</td>
</tr>
<tr>
<td>Vinyl Acetate</td>
<td>108-05-4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Vinyl Bromide</td>
<td>593-60-2</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>75-01-4</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Xylene, [meta-] (Notes 5, 11)</td>
<td>108-38-3</td>
<td>10</td>
<td>M-Dimethylbenzene, 1,3-Xylene, 1,3-Dimethylbenzene, M-Xylol</td>
</tr>
<tr>
<td>Xylene, [ortho-] (Notes 5, 11)</td>
<td>95-47-6</td>
<td>10</td>
<td>O-Xylol, O-Dimethylbenzene, O-methyltoluene, 1,2-Xylene, 1,2-Dimethylbenzene</td>
</tr>
<tr>
<td>Xylene, [para-] (Notes 5, 11)</td>
<td>106-42-3</td>
<td>10</td>
<td>P-Dimethylbenzene, P-Methyltoluene, 1,4-Xylene, 1,4-Dimethylbenzene, P-Xylol</td>
</tr>
</tbody>
</table>
Xylenes (Mixed Isomers) (Notes 5, 11)

| 1330-20-7 | 10 | Aromatic hydrocarbons Mixed, Diemthylbenzene |

Note 1: Includes mineral fiber emissions from facilities manufacturing or processing glass, rock, or slag fibers (or other mineral derived fibers) of average diameter 1 micrometer or less.

Note 2: For those compounds specifically listed, emissions of compounds in this aggregate group are combined for comparison to the SMALs.

Note 3: Emissions of compounds in this aggregate group are not combined for comparison to the SMAL.

Note 4: Mass of the metal portion of the compound is used to determine emissions for comparison to the SMALs.

Note 5: The total mass of the compound is used to determine emissions for comparison to the SMALs.

Note 6: For these compounds, emissions within the same aggregate group are combined for comparison to the SMALS and the 2,4-D portion of the 2,4-D salts and esters and the Dinitro-ortho-cresol (DNO) portion of 4,6 Dinitro-o-cresol salts are used to determine emissions for comparison to the SMALs.

Note 7: Except for those compounds specifically listed, emissions of cyanide compounds are combined and the mass of the cyanide portion of the compound is used to determine emissions for comparison to the SMALS. For those compounds specifically listed in the table, emissions are not combined and the total mass of the compound is used for comparison to the SMAL.

Note 8: The SMAL for radionuclides is defined as the effective dose equivalent to 0.3 millirems per year for 7 year exposure associated with a cancer risk of 1 in 1 million.

Note 9: For comparison to the SMAL, emissions of polychlorinated dibenzodioxins & polychlorinated dibenzofurans (PCDD/PCDF) and polychlorinated biphenyls (PCB) are scaled according to the toxic equivalency factor method and then combined for comparison to the RAL:

1) Scale the annual emissions of each PCDD/PCDF and PCB by its respective toxic equivalency factor (TEF)
2) After the emissions are scaled, combine them into a single potential annual emissions (tons/year) for comparison to the SMAL

Toxic Equivalency Factors for PCDD, PCDF, and PCB compounds

<table>
<thead>
<tr>
<th>PCDDs</th>
<th>TEF</th>
<th>PCDFs</th>
<th>TEF</th>
<th>PCBs</th>
<th>TEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,3,7,8-TCDD</td>
<td>1.0</td>
<td>2,3,7,8-TCDF</td>
<td>0.1</td>
<td>3,3',4,4'-TCB (77)</td>
<td>0.0001</td>
</tr>
<tr>
<td>1,2,3,7,8-PeCDD</td>
<td>1.0</td>
<td>1,2,3,7,8-PeCDF</td>
<td>0.03</td>
<td>3,4,4',5-TCB (81)</td>
<td>0.0003</td>
</tr>
<tr>
<td>1,2,3,4,7,8-HxCDD</td>
<td>0.1</td>
<td>1,2,3,4,7,8-PeCDF</td>
<td>0.3</td>
<td>3,3',4,4',5-PeCB (126)</td>
<td>0.1</td>
</tr>
<tr>
<td>1,2,3,7,8,9-HxCDD</td>
<td>0.1</td>
<td>1,2,3,4,7,8-HxCDF</td>
<td>0.1</td>
<td>3,3',4,4',5,5'-HxCB (169)</td>
<td>0.03</td>
</tr>
<tr>
<td>1,2,3,6,7,8-HxCDD</td>
<td>0.1</td>
<td>1,2,3,6,7,8-HxCDF</td>
<td>0.1</td>
<td>2,3,3',4,4'-PeCB (105)</td>
<td>0.00003</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-HpCDD</td>
<td>0.01</td>
<td>1,2,3,6,7,8-HxCDF</td>
<td>0.1</td>
<td>2,3,4',5 PeCB (114)</td>
<td>0.00003</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8,9-OCDD</td>
<td>0.0003</td>
<td>2,3,4,6,7,8-HxCDF</td>
<td>0.1</td>
<td>2,3,4,4',5 PeCB (118)</td>
<td>0.00003</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-HpCDF</td>
<td>0.01</td>
<td>1,2,3,4,6,7,8-HpCDF</td>
<td>0.01</td>
<td>2',3,4,4',5 PeCB (123)</td>
<td>0.00003</td>
</tr>
<tr>
<td>1,2,3,4,7,8,9-HpCDF</td>
<td>0.01</td>
<td>1,2,3,4,7,8,9-HpCDF</td>
<td>0.01</td>
<td>2,3,3',4,4',5-HxCB (156)</td>
<td>0.00003</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8,9-OCDF</td>
<td>0.0003</td>
<td>1,2,3,4,6,7,8,9-OCDF</td>
<td>0.0003</td>
<td>2,3,3',4,4',5-HxCB (157)</td>
<td>0.00003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,3,4,4',5,5'-HxCB (167)</td>
<td>0.00003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,3,3',4,4',5,5'-HxCB (189)</td>
<td>0.00003</td>
</tr>
</tbody>
</table>
Note 10: Chromium (VI) compounds, also known as hexavalent chromium compounds, are combined for comparison to the SMAL for Chromium (VI) compounds. Chromium Compounds of all other oxidation states [i.e. excluding Chromium (VI) Compounds] are combined for comparison to the SMAL for Chromium Compounds.

Note 11: Emissions of all isomers are combined and compared to the SMAL for any of the listed isomers as they are all the same.
Mr. Jason Hutchens
R & D Director
Undercover, Inc.
PO Box 620
Rogersville, MO 65742

RE: New Source Review Permit - Project Number: 2010-10-012

Dear Mr. Hutchens:

Enclosed with this letter is your permit to construct. Please study it carefully. Also, note the special conditions, if any, on the accompanying pages. The document entitled, "Review of Application for Authority to Construct," is part of the permit and should be kept with this permit in your files. Operation in accordance with these conditions, your new source review permit application and with your amended operating permit is necessary for continued compliance. The reverse side of your permit certificate has important information concerning standard permit conditions and your rights and obligations under the laws and regulations of the State of Missouri.

If you have any questions regarding this permit, please do not hesitate to contact Chia-Wei Young, at the Department’s Air Pollution Control Program, P.O. Box 176, Jefferson City, MO 65102, or by telephone at (573)751-4817. Thank you for your time and attention to this matter.

Sincerely,

AIR POLLUTION CONTROL PROGRAM

Kendall B. Hale
New Source Review Unit Chief

KBH:cyk

Enclosures

c: Southwest Regional Office
PAMS File: 2010-10-012

Permit Number: