STATE OF MISSOURI

DEPARTMENT OF NATURAL RESOURCES

MISSOURI AIR CONSERVATION COMMISSION

PERMIT TO CONSTRUCT

Under the authority of RSMo 643 and the Federal Clean Air Act the applicant is authorized to construct the air contaminant source(s) described below, in accordance with the laws, rules and conditions as set forth herein.

Permit Number: 09 2013-001 Project Number: 2013-06-009 Installation Number: 159-0039

Parent Company: Gardner Denver, Inc.

Parent Company Address: 1800 Gardner Expressway, Quincy, IL 62305

Installation Name: Gardner Denver, Inc. - Sedalia Plant

Installation Address: 305 North State Fair Boulevard, Sedalia, MO 65301

Location Information: Pettis County, S32, T46N, R21E

Application for Authority to Construct was made for:
Installation of two burn-off ovens, a dry ice abrasive blasting booth, and a metal thermal spray booth. This review was conducted in accordance with Section (5), Missouri State Rule 10 CSR 10-6.060, Construction Permits Required.

☐ Standard Conditions (on reverse) are applicable to this permit.

☑ Standard Conditions (on reverse) and Special Conditions are applicable to this permit.

SEP 3 2013

DIRECTOR OR DESIGNEE
DEPARTMENT OF NATURAL RESOURCES
STANDARD CONDITIONS:

Permission to construct may be revoked if you fail to begin construction or modification within two years from the effective date of this permit. Permittee should notify the Air Pollution Control Program if construction or modification is not started within two years after the effective date of this permit, or if construction or modification is suspended for one year or more.

You will be in violation of 10 CSR 10-6.060 if you fail to adhere to the specifications and conditions listed in your application, this permit and the project review. In the event that there is a discrepancy between the permit application and this permit, the conditions of this permit shall take precedence. Specifically, all air contaminant control devices shall be operated and maintained as specified in the application, associated plans and specifications.

You must notify the Department’s Air Pollution Control Program of the anticipated date of start up of these air contaminant sources. The information must be made available within 30 days of actual startup. Also, you must notify the Department of Natural Resources Regional office responsible for the area within which you are located within 15 days after the actual start up of these air contaminant sources.

A copy of this permit and permit review shall be kept at the installation address and shall be made available to Department of Natural Resources’ personnel upon request.

You may appeal this permit or any of the listed special conditions to the Administrative Hearing Commission (AHC), P.O. Box 1557, Jefferson City, MO 65102, as provided in RSMo 643.075.6 and 621.250.3. If you choose to appeal, you must file a petition with the AHC within 30 days after the date this decision was mailed or the date it was delivered, whichever date was earlier. If any such petition is sent by registered mail or certified mail, it will be deemed filed on the date it is mailed. If it is sent by any method other than registered mail or certified mail, it will be deemed filed on the date it is received by the AHC.

If you choose not to appeal, this certificate, the project review and your application and associated correspondence constitutes your permit to construct. The permit allows you to construct and operate your air contaminant sources(s), but in no way relieves you of your obligation to comply with all applicable provisions of the Missouri Air Conservation Law, regulations of the Missouri Department of Natural Resources and other applicable federal, state and local laws and ordinances.

The Air Pollution Control Program invites your questions regarding this air pollution permit. Please contact the Construction Permit Unit at (573) 751-4817. If you prefer to write, please address your correspondence to the Missouri Department of Natural Resources, Air Pollution Control Program, P.O. Box 176, Jefferson City, MO 65102-0176, attention: Construction Permit Unit.
SPECIAL CONDITIONS:

The permittee is authorized to construct and operate subject to the following special conditions:

The special conditions listed in this permit were included based on the authority granted the Missouri Air Pollution Control Program by the Missouri Air Conservation Law (specifically 643.075) and by the Missouri Rules listed in Title 10, Division 10 of the Code of State Regulations (specifically 10 CSR 10-6.060). For specific details regarding conditions, see 10 CSR 10-6.060 paragraph (12)(A)10. “Conditions required by permitting authority.”

Gardner Denver, Inc. - Sedalia Plant
Pettis County, S32, T46N, R21E

1. Control Device Requirement - Cartridge Filters
 A. Gardner Denver, Inc. - Sedalia Plant shall control emissions from the thermal spraying equipment (EP-65) and the abrasive blasting booth (EP-64) using cartridge filters as specified in the permit application.

 B. The cartridge filters shall be operated and maintained in accordance with the manufacturer's specifications. The cartridge filter shall be equipped with a gauge or meter, which indicates the pressure drop across the control device. These gauges or meters shall be located such that the Department of Natural Resources' employees may easily observe them.

 C. Replacement filters for the cartridge filters shall be kept on hand at all times. The filters shall be made of fibers appropriate for operating conditions expected to occur (i.e. temperature limits, acidic and alkali resistance, and abrasion resistance).

 D. Gardner Denver, Inc. - Sedalia Plant shall monitor and record the operating pressure drop across the cartridge filters at least once every 24 hours. The operating pressure drop shall be maintained within the design conditions specified by the manufacturer's performance warranty.

 E. Gardner Denver, Inc. - Sedalia Plant shall maintain a copy of the cartridge filter manufacturer's performance warranty on site.

 F. Gardner Denver, Inc. - Sedalia Plant shall maintain an operating and maintenance log for the cartridge filters which shall include the following:
 1) Incidents of malfunction, with impact on emissions, duration of event, probable cause, and corrective actions; and
 2) Maintenance activities, with inspection schedule, repair actions, and replacements, etc.
SPECIAL CONDITIONS:
The permittee is authorized to construct and operate subject to the following special conditions:

 B. Natural Gas shall be the only fuel burned in this oven.

 C. Gardner Denver, Inc. - Sedalia Plant shall use a direct flame afterburner to control emissions from the burn-off oven. The afterburner shall be operated at a temperature greater than 1,200 degrees Fahrenheit with more than a one half (1/2) second residence time to ensure a minimum combustion efficiency of 99.9%.

 D. The oven shall be equipped with an electric controller, with digital readout, which is able to monitor and display the temperature in the second combustion chamber to an accuracy of plus or minus two percent (2%).

 A. Gardner Denver, Inc. - Sedalia Plant shall use abrasive blasting booths to capture emissions from the abrasive blasting activities. Emissions from the blasting booths shall be routed through the cartridge filters as stated in Special Condition 1.

 B. Gardner Denver, Inc. - Sedalia Plant shall design and construct each abrasive blasting booth according to the Occupational Safety and Health Administration (OSHA) requirements, 29 CFR 1910.94(c)(6) Velocity and air flow requirements.

 C. Gardner Denver, Inc. - Sedalia Plant shall demonstrate that each abrasive blasting booth was constructed according to Special Condition 3.B. by keeping a record of the following design parameters:
 1) the minimum recommended face velocity
 2) engineering drawings which demonstrate that the spray booth was designed to meet the minimum face velocity

 D. Gardner Denver, Inc. - Sedalia Plant shall verify the proper operation of each abrasive blasting booth by checking the face velocity of the booth every 24 hours of operation.
SPECIAL CONDITIONS:

The permittee is authorized to construct and operate subject to the following special conditions:

4. Capture Device Requirement – Shrouded Hood
 A. Gardner Denver, Inc. - Sedalia Plant shall use a shrouded hood to capture emissions from the thermal spraying operation (EP-65). A hood is a shaped inlet to a pollution control system. Emissions from the shrouded hood shall be routed through the cartridge filters as stated in Special Condition 1.

 B. Gardner Denver, Inc. - Sedalia Plant shall minimize cross drafts by locating the thermal spraying operation and the shrouded hood inside a building with four sides and a roof.

 C. Gardner Denver, Inc. - Sedalia Plant shall design and construct the shrouded hood according to the most current version of the industrial ventilation manual entitled, "Industrial Ventilation - A Manual of Recommended Practice, American Conference of Governmental Industrial Hygienists".

 D. Gardner Denver, Inc. - Sedalia Plant shall demonstrate, at least once per calendar year, that each shrouded hood was constructed according to Special Condition 4.C. by keeping a record of the following design parameters for each hood:
 1) the cross-sectional area of the hood inlet
 2) the distance from the hood inlet to the emissions source
 3) the minimum recommended volumetric airflow
 4) the minimum recommended hood face velocity

5. Annual Emission Limit
 A. Gardner Denver, Inc. - Sedalia Plant shall emit less than 0.002 tons of hexavalent chromium in any 12-month period from thermal spraying (EP-65).

 B. Gardner Denver, Inc. - Sedalia Plant shall demonstrate compliance with Special Condition 5.A using Attachment A or another equivalent form that has been approved by the Air Pollution Control Program, including an electronic form.

6. Abrasive Blasting of Alternative Coating Materials
 A. When considering blasting an alternative surface coating material that contains particulate HAPs in the abrasive blasting booth (EP-64) that is different than the materials listed in the Application for Authority to
SPECIAL CONDITIONS:
The permittee is authorized to construct and operate subject to the following special conditions:

Construct, Gardner Denver, Inc. - Sedalia Plant shall calculate the potential emissions of all individual particulate HAPs in the alternative material.

B. Gardner Denver, Inc. - Sedalia Plant shall seek approval from the Air Pollution Control Program before blasting the alternative material if the potential individual particulate HAP emissions of blasting the alternative material are equal to or greater than the screening model action level (SMAL) for any chemical listed in Appendix B. Potential particulate HAP emissions shall be calculated using the following equation: (potential emissions) = (gallon weight of coating(lb)) x (HAP weight %) x (0.05) x (4.38)

7. Record Keeping and Reporting Requirements
 A. Gardner Denver, Inc. - Sedalia Plant shall maintain all records required by this permit for not less than five years and shall make them available immediately to any Missouri Department of Natural Resources' personnel upon request. These records shall include MSDS for all materials used.

 B. Gardner Denver, Inc. - Sedalia Plant shall report to the Air Pollution Control Program’s Compliance/Enforcement Section, P.O. Box 176, Jefferson City, MO 65102, no later than ten days after the end of the month during which any record required by this permit show an exceedance of a limitation imposed by this permit.
Gardner Denver, Inc. - Sedalia Plant
305 North State Fair Boulevard
Sedalia, MO 65301

Parent Company:
Gardner Denver, Inc.
1800 Gardner Expressway
Quincy, IL 62305

Pettis County, S32, T46N, R21E

REVIEW SUMMARY

- Gardner Denver, Inc. - Sedalia Plant has applied for authority to Installation of two burn-off ovens, a dry ice abrasive blasting booth, and a metal thermal spray booth.

- HAP emissions are expected from the proposed equipment. HAPs of concern from this process are products of natural gas combustion.

- None of the New Source Performance Standards (NSPS) apply to the installation.

- None of the NESHAPs apply to this installation. None of the currently promulgated MACT regulations apply to the proposed equipment.

- Cartridge filters will be used to control the particulate matter emissions from the thermal spray and abrasive blasting equipment in this permit.

- This review was conducted in accordance with Section (5) of Missouri State Rule 10 CSR 10-6.060, Construction Permits Required. Potential emissions of hexavalent chromium exceed the insignificance level as stated in 10 CSR 6.061(3)(A)3.B. but are limited below the respective SMAL for hexavalent chromium.

- This installation is located in Pettis County, an attainment area for all criteria pollutants.

- This installation is not on the List of Named Installations found in 10 CSR 10-6.020(3)(B), Table 2. The installation's major source level is 250 tons per year and fugitive emissions are not counted toward major source applicability.

- Ambient air quality modeling was not performed since potential emissions of hexavalent chromium from the application are limited below the SMAL.
• Emissions testing is not required for the equipment.

• A Basic Operating Permit application is required for this installation within 30 days of equipment startup.

• Approval of this permit is recommended with special conditions.

INSTALLATION DESCRIPTION

Gardner Denver, Inc. - Sedalia Plant is a manufacturing facility dedicated to the manufacturing of industrial air compressors and blowers. The primary products are rotary screw air compressors, rotary impeller blowers, vacuum pumps, and reciprocating air compressors.

The primary raw material is raw steel casting from external foundries. The primary processes at this facility consist of machining the metal components used in the compressors and blowers through various metal machining processes, including lathes, mills, and grinders. These precision machined components are assembled into compressor and blower finished products. These products are then tested, painted, and shipped to various locations both domestically and internationally.

No New Source Review permits have been issued to Gardner Denver, Inc. - Sedalia Plant from the Air Pollution Control Program. However, Gardner Denver, Inc. - Sedalia Plant operates under a basic operating permit.

PROJECT DESCRIPTION

Gardner Denver, Inc. - Sedalia Plant proposes the installation of two burn-off ovens, a dry ice abrasive blasting booth, and a metal thermal spray booth. The equipment listed above is used for reconditioning pieces of blower units for remanufacture. The used blowers are disassembled upon arrival at the facility. The individual pieces are placed inside one of the heat cleaning ovens to remove any buildup of materials on the equipment. The parts are then cooled and moved to the dry ice abrasive blasting booth to remove any surface coatings from the equipment. If the parts show signs of wear, they are sent to the metal thermal spray booth and machined to restore the original appearance and functionality. Emissions from the thermal spray booth and the dry ice abrasive blasting booth will be controlled by a cartridge filter as stated in the application for authority to construct.

EMISSIONS/CONTROLS EVALUATION

The emission factors used in this analysis for the heat cleaning ovens were obtained from the EPA document AP-42, *Compilation of Air Pollutant Emission Factors*, Fifth Edition, Section 1.4 *Natural Gas Combustion*, July 1998. The potential emissions of thermal spraying (EP-65) and dry ice abrasive blasting (EP-64) are based on a mass balance approach. The transfer efficiency of thermal spraying is based on the worst case deposition efficiency as stated in an SDE Study of Twin-wire Electric Arc Sprayed
Nickel-Aluminum Coatings. The potential to emit hexavalent chromium from twin-wire thermal spraying is based on “Airborne Toxic Control Measure to Reduce Emissions of Hexavalent Chromium and Nickel from Thermal Spraying”, Title 17, California Code of Regulations, Section 93102.5. A combined control and capture efficiency equal to 95% was applied to the potential emissions of particulate matter and potential emissions of trivalent chromium from thermal spraying because of the shrouded hood over the thermal spray equipment and the cartridge filter that controls the particulate emissions. The control and capture efficiency of hexavalent chromium emissions from thermal spraying were accounted for in the emission factor used to calculate potential emissions. All of the carbon dioxide within the dry ice for abrasive blasting is assumed to be emitted to the ambient atmosphere. The potential emission of cobalt compounds from abrasive blasting is based on blasting New Delaval Blue W/R Enamel 100% of the operating time. The potential particulate emissions are based on the worst case scenario of all paint removed assumed to be particulate matter, and blasting LP1167E Gray W.S. 28H73/GDP123A 100% of the time. A combined control and capture efficiency equal to 95% was applied to the potential emissions of the dry ice abrasive blasting based on the booth and cartridge filter that are associated with the abrasive blasting operation.

The following table provides an emissions summary for this project. Existing potential emissions were taken from the most recent operating permit determination project number 2013-06-066. Existing actual emissions were taken from the installation’s 2012 EIQ. Potential emissions of the application represent the potential of the new equipment, assuming continuous operation (8760 hours per year).

Table 2: Emissions Summary (tons per year)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>25.0</td>
<td>N/D</td>
<td>N/D</td>
<td>5.62</td>
<td>2.77</td>
<td>N/D</td>
</tr>
<tr>
<td>PM<sub>10</sub></td>
<td>15.0</td>
<td>N/D</td>
<td>N/D</td>
<td>0.093</td>
<td>0.093</td>
<td>N/D</td>
</tr>
<tr>
<td>PM<sub>2.5</sub></td>
<td>10.0</td>
<td>N/D</td>
<td>N/D</td>
<td>0.093</td>
<td>0.093</td>
<td>N/D</td>
</tr>
<tr>
<td>SO<sub>x</sub></td>
<td>40.0</td>
<td>0.05</td>
<td>N/D</td>
<td>N/D</td>
<td>0.0045</td>
<td>N/A</td>
</tr>
<tr>
<td>NO<sub>x</sub></td>
<td>40.0</td>
<td>8.3</td>
<td>N/D</td>
<td>N/D</td>
<td>0.75</td>
<td>N/A</td>
</tr>
<tr>
<td>VOC</td>
<td>40.0</td>
<td>56.53</td>
<td>5.56</td>
<td>0.04</td>
<td>N/A</td>
<td>56.57</td>
</tr>
<tr>
<td>CO</td>
<td>100.0</td>
<td>6.97</td>
<td>N/D</td>
<td>N/D</td>
<td>0.63</td>
<td>N/A</td>
</tr>
<tr>
<td>GHG (CO<sub>2</sub>e)</td>
<td>100,000</td>
<td>N/D</td>
<td>N/D</td>
<td>1450.9</td>
<td>N/A</td>
<td>N/D</td>
</tr>
<tr>
<td>GHG (mass)</td>
<td>0.0 / 100.0</td>
<td>N/D</td>
<td>N/D</td>
<td>1445.4</td>
<td>N/A</td>
<td>N/D</td>
</tr>
<tr>
<td>HAPs</td>
<td>10.0/25.0</td>
<td>0.41</td>
<td>N/D</td>
<td>0.70</td>
<td>0.131</td>
<td>1.11</td>
</tr>
<tr>
<td>Chromium (VI)</td>
<td>0.002*</td>
<td>N/A</td>
<td>N/A</td>
<td>0.001</td>
<td><0.002</td>
<td><0.002</td>
</tr>
<tr>
<td>Chromium Compounds</td>
<td>5.0*</td>
<td>N/A</td>
<td>N/A</td>
<td>0.69</td>
<td>0.117</td>
<td>0.117</td>
</tr>
<tr>
<td>Cobalt Compounds</td>
<td>0.1*</td>
<td>N/A</td>
<td>N/A</td>
<td>0.003</td>
<td>N/A</td>
<td>0.003</td>
</tr>
</tbody>
</table>

N/A = Not Applicable; N/D = Not Determined
*indicates the SMAL for individual HAPs
PERMIT RULE APPLICABILITY

This review was conducted in accordance with Section (5) of Missouri State Rule 10 CSR 10-6.060, Construction Permits Required. Potential emissions of hexavalent chromium exceed the insignificance level as stated in 10 CSR 6.061(3)(A)3.B. but are limited below the respective SMAL for hexavalent chromium.

APPLICABLE REQUIREMENTS

Gardner Denver, Inc. - Sedalia Plant shall comply with the following applicable requirements. The Missouri Air Conservation Laws and Regulations should be consulted for specific record keeping, monitoring, and reporting requirements. Compliance with these emission standards, based on information submitted in the application, has been verified at the time this application was approved. For a complete list of applicable requirements for your installation, please consult your operating permit.

GENERAL REQUIREMENTS

- Submission of Emission Data, Emission Fees and Process Information, 10 CSR 10-6.110
- Operating Permits, 10 CSR 10-6.065
- Restriction of Particulate Matter to the Ambient Air Beyond the Premises of Origin, 10 CSR 10-6.170
- Restriction of Emission of Visible Air Contaminants, 10 CSR 10-6.220
- Restriction of Emission of Odors, 10 CSR 10-6.165

SPECIFIC REQUIREMENTS

- Restriction of Particulate Matter From Industrial Processes, 10 CSR 10-6.400 applies to the abrasive blasting at this facility, but this process is in compliance with the rule.
- Restriction of Particulate Matter Emissions From Fuel Burning Equipment Used for Indirect Heating, 10 CSR 10-6.405
On the basis of this review conducted in accordance with Section (5), Missouri State Rule 10 CSR 10-6.060, *Construction Permits Required*, I recommend this permit be granted with special conditions.

________________________________ _________________________________
J Luebbert Date
New Source Review Unit

PERMIT DOCUMENTS

The following documents are incorporated by reference into this permit:

- The Application for Authority to Construct form, dated May 28, 2013, received May 30, 2013, designating Gardner Denver, Inc. as the owner and operator of the installation.

- “Airborne Toxic Control Measure to Reduce Emissions of Hexavalent Chromium and Nickel from Thermal Spraying”, Title 17, California Code of Regulations, Section 93102.5.
Attachment A: Hexavalent Chromium Annual Emissions Tracking Sheet

Gardner Denver, Inc. – Sedalia Plant

Project Number: 2013-06-009
Plant ID: 159-0039
Permit Number:

This sheet covers the period from ________________ to ________________ (Copy as needed)

(Month, Day Year) (Month, Day Year)

<table>
<thead>
<tr>
<th>Month</th>
<th>Amount of Wire Sprayed (pounds)</th>
<th>Emission Factor (lb/lb of wire)</th>
<th>Monthly Emissions¹ (lbs)</th>
<th>Monthly Emissions² (tons)</th>
<th>12-Month Total Emissions³ (tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>10,000</td>
<td>0.00009</td>
<td>0.9</td>
<td>0.00045</td>
<td>0.00145</td>
</tr>
</tbody>
</table>

1. Multiply the amount of wire sprayed by the emission factor
2. Divide the monthly emissions in pounds by 2000
3. Calculate using the following equation: (12-Month Total Emissions from last month) – (Monthly Emissions² from this month last year) + (Monthly Emissions²)

A 12-Month Total Emissions less than 0.002 tons of hexavalent chromium indicates compliance with Special Condition 5.A.
APPENDIX A

Abbreviations and Acronyms

% percent
°F degrees Fahrenheit
acfm actual cubic feet per minute
BACT Best Available Control Technology
BMPs Best Management Practices
Btu........ British thermal unit
CAM Compliance Assurance Monitoring
CAS........ Chemical Abstracts Service
CEMS Continuous Emission Monitor System
CFR Code of Federal Regulations
CO carbon monoxide
CO₂ carbon dioxide
CO₂e carbon dioxide equivalent
COMS..... Continuous Opacity Monitoring System
CSR......... Code of State Regulations
dscf dry standard cubic feet
EIQ Emission Inventory Questionnaire
EP Emission Point
EPA Environmental Protection Agency
EU.......... Emission Unit
fps feet per second
ft feet
GACT Generally Available Control Technology
GHG Greenhouse Gas
gpm gallons per minute
gr grains
GWP Global Warming Potential
HAP Hazardous Air Pollutant
hr hour
hp horsepower
lb pound
lbs/hr pounds per hour
MACT Maximum Achievable Control Technology
μg/m³ micrograms per cubic meter
m/s meters per second
Mgal 1,000 gallons
MW megawatt
MHDR..... maximum hourly design rate
MMBtu.... Million British thermal units
MMCF.... million cubic feet
MSDS Material Safety Data Sheet
NAAQS... National Ambient Air Quality Standards
NESHAPs National Emissions Standards for Hazardous Air Pollutants
NOx....... nitrogen oxides
NSPS New Source Performance Standards
NSR....... New Source Review
PM particulate matter
PM₁₀ particulate matter less than 10 microns in aerodynamic diameter
PM₂·₅ particulate matter less than 2.5 microns in aerodynamic diameter
ppm parts per million
PSD Prevention of Significant Deterioration
PTE........ potential to emit
RACT Reasonable Available Control Technology
RAL Risk Assessment Level
SCC Source Classification Code
scfm standard cubic feet per minute
SIC.......... Standard Industrial Classification
SIP State Implementation Plan
SMAL Screening Model Action Levels
SO₅ sulfur oxides
SO₂ sulfur dioxide
tph tons per hour
tpy tons per year
VMT vehicle miles traveled
VOC Volatile Organic Compound
APPENDIX B: Table of Hazardous Air Pollutants and Screening Model Action Levels (May 3, 2012 Revision 10)

<table>
<thead>
<tr>
<th>Chemical</th>
<th>CAS #</th>
<th>SMAL (tons/yr)</th>
<th>Group ID</th>
<th>VOC</th>
<th>PM</th>
<th>Chemical</th>
<th>CAS #</th>
<th>SMAL (tons/yr)</th>
<th>Group ID</th>
<th>VOC</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACETALDEHYDE</td>
<td>75-07-0</td>
<td>9</td>
<td>Y</td>
<td>N</td>
<td></td>
<td>CARBARY</td>
<td>63-25-2</td>
<td>10</td>
<td>V</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>ACETAMIDE</td>
<td>60-35-8</td>
<td>1</td>
<td>Y</td>
<td>N</td>
<td></td>
<td>CARBON DISULFIDE</td>
<td>75-15-0</td>
<td>1</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>ACETONITRITE</td>
<td>75-05-8</td>
<td>4</td>
<td>Y</td>
<td>N</td>
<td></td>
<td>CARBON TETRACHLORIDE</td>
<td>56-23-5</td>
<td>1</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>ACETOPHANE</td>
<td>98-86-3</td>
<td>1</td>
<td>Y</td>
<td>N</td>
<td></td>
<td>CARBONYL SULFIDE</td>
<td>463-58-1</td>
<td>5</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>ACETAMINOCYCLOHEXYL, [2-]</td>
<td>53-96-3</td>
<td>0.005</td>
<td>V</td>
<td>Y</td>
<td>Y</td>
<td>CATECHOL</td>
<td>133-90-4</td>
<td>5Y</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACROLEIN</td>
<td>107-02-8</td>
<td>0.04</td>
<td>Y</td>
<td>N</td>
<td></td>
<td>CHLORAMBEN</td>
<td>133-90-4</td>
<td>5</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>ACRYLAMIDE</td>
<td>79-06-1</td>
<td>0.02</td>
<td>Y</td>
<td>N</td>
<td></td>
<td>CHLOROACETIC ACID</td>
<td>79-9-2</td>
<td>0.002</td>
<td>L</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>ACETONITRITE</td>
<td>107-13-1</td>
<td>0.3</td>
<td>Y</td>
<td>N</td>
<td></td>
<td>CHLOROAMYL CHLORIDE</td>
<td>79-9-2</td>
<td>0.1</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>ALLYL CHLORIDE</td>
<td>107-05-1</td>
<td>1</td>
<td>Y</td>
<td>N</td>
<td></td>
<td>CHLORACETOPHENONE, [2-]</td>
<td>532-27-4</td>
<td>0.6</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>AMINOBIPHENYL, [4-]</td>
<td>49-92-7</td>
<td>1</td>
<td>Y</td>
<td>N</td>
<td></td>
<td>CHLOROMETHYL METHYL ETHER</td>
<td>107-30-2</td>
<td>0.1</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>ANILINE</td>
<td>62-53-3</td>
<td>1</td>
<td>Y</td>
<td>N</td>
<td></td>
<td>CHLOROPRENE</td>
<td>126-99-8</td>
<td>0.1</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>ANISIDINE, [ORTHO-]</td>
<td>90-04-0</td>
<td>0.01</td>
<td>Y</td>
<td>N</td>
<td></td>
<td>CHLOROBENZILATE</td>
<td>510-15-6</td>
<td>0.4</td>
<td>V</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>ANTHRACENE</td>
<td>120-12-7</td>
<td>0.3</td>
<td>Y</td>
<td>N</td>
<td></td>
<td>CHLOROFORM</td>
<td>67-66-3</td>
<td>0.9</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>ANTIMONY COMPOUNDS</td>
<td>5</td>
<td>H</td>
<td>N</td>
<td>Y</td>
<td></td>
<td>CHLOROPRENE</td>
<td>126-99-8</td>
<td>1</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>ANTIMONY PENTAFLUORIDE</td>
<td>7783-70-2</td>
<td>0.1</td>
<td>H</td>
<td>N</td>
<td>Y</td>
<td>CHROMIUM (VI) COMPOUNDS</td>
<td>500-000</td>
<td>0.002</td>
<td>L</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>ANTIMONY TRIOXIDE</td>
<td>130-64-4</td>
<td>1</td>
<td>H</td>
<td>N</td>
<td>Y</td>
<td>CHROMIUM COMPOUNDS</td>
<td>28300-74-5</td>
<td>5</td>
<td>L</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>ANTIMONY TRISULFIDE</td>
<td>134-04-8</td>
<td>0.1</td>
<td>H</td>
<td>N</td>
<td>Y</td>
<td>COKE OVEN EMISISSIONS</td>
<td>500-000</td>
<td>0.005</td>
<td>I</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>ARSENIC COMPOUNDS</td>
<td>0.005</td>
<td>I</td>
<td>N</td>
<td>Y</td>
<td></td>
<td>CRESOL, [META-]</td>
<td>108-39-4</td>
<td>1B</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>ASBESTOS</td>
<td>1332-21-4</td>
<td>0</td>
<td>A</td>
<td>N</td>
<td>Y</td>
<td>CRESOL, [PARA-]</td>
<td>106-44-5</td>
<td>1B</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>BENZ(A)ANTHRACENE</td>
<td>56-55-3</td>
<td>0.01</td>
<td>V</td>
<td>Y</td>
<td>N</td>
<td>CRESOL, [ORTHO-]</td>
<td>95-48-7</td>
<td>1B</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>BENZENE</td>
<td>71-43-3</td>
<td>2</td>
<td>Y</td>
<td>N</td>
<td></td>
<td>CRESOLS, [MIXED ISOMERS]</td>
<td>1319-77-3</td>
<td>1B</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>BENZENE</td>
<td>92-87-6</td>
<td>0.0003</td>
<td>V</td>
<td>Y</td>
<td>N</td>
<td>ETHOXYLACETATE, (ACETIC, 2-)</td>
<td>1319-77-3</td>
<td>0.0003</td>
<td>V</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>BENZENALDEHYDE</td>
<td>50-33-8</td>
<td>0.01</td>
<td>V</td>
<td>Y</td>
<td>N</td>
<td>ETHYL ACRYLATE</td>
<td>140-88-5</td>
<td>1</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>BENZINOL</td>
<td>205-68-2</td>
<td>0.01</td>
<td>V</td>
<td>N</td>
<td>Y</td>
<td>ETHYL BENZENE</td>
<td>100-41-4</td>
<td>1</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>BENZINOL-4</td>
<td>207-08-6</td>
<td>0.01</td>
<td>V</td>
<td>Y</td>
<td>N</td>
<td>ETHYL CHLORIDE</td>
<td>75-003</td>
<td>10</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>BENZOTRICHLORIDE</td>
<td>98-07-7</td>
<td>0.006</td>
<td>Y</td>
<td>N</td>
<td></td>
<td>ETHYLENE GLYCOL</td>
<td>107-21-1</td>
<td>10</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>BENZYL CHLORIDE</td>
<td>100-44-7</td>
<td>0.1</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>ETHYLENE GLYCOL MONOBUTYL ETHER</td>
<td>111-76-2</td>
<td>1</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>BERYLLIUM COMPOUNDS</td>
<td>0.008</td>
<td>J</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>DIACETONE</td>
<td>334-88-3</td>
<td>1</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>BERYLLIUM SALTS</td>
<td>2E-05-0</td>
<td>P</td>
<td>J</td>
<td>N</td>
<td>Y</td>
<td>DICHLOROBENZIENE, [3,3-]</td>
<td>53-70-3</td>
<td>0.01</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>BISCHLOROETHYLETHYLETHER</td>
<td>111-44-4</td>
<td>0.08</td>
<td>J</td>
<td>N</td>
<td>Y</td>
<td>DICHLOROFUORAN</td>
<td>132-64-9</td>
<td>5</td>
<td>V</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>BISCHLOROETHYL ETHEL</td>
<td>542-88-1</td>
<td>0.0003</td>
<td>O</td>
<td>N</td>
<td>Y</td>
<td>DICHLOROETHYLETHYLETHER</td>
<td>126-12-8</td>
<td>0.01</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>BROMOTHYLETHER</td>
<td>25-25-2</td>
<td>10</td>
<td>Y</td>
<td>N</td>
<td></td>
<td>DIETHYLCHLOROETHYLETHYLETHER</td>
<td>106-83-4</td>
<td>0.1</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>BROMOMETHANE</td>
<td>74-83-9</td>
<td>10</td>
<td>Y</td>
<td>N</td>
<td></td>
<td>DIETHYLPHTHALATE</td>
<td>106-74-2</td>
<td>1</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>BUTADIEINE, [1,3-]</td>
<td>106-99-0</td>
<td>0.07</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>DICHLOOROBENZENE, [1,4-]</td>
<td>106-46-7</td>
<td>3</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>BUTADIENE, [2,3-]</td>
<td>112-07-2</td>
<td>5</td>
<td>P</td>
<td>Y</td>
<td>N</td>
<td>DICHLOOROACETIC ACID, [2,4-]</td>
<td>94-75-7</td>
<td>10</td>
<td>C</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>BUTYLENE OXIDE, [1,2-]</td>
<td>106-88-7</td>
<td>1</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>DICHLOOROBENZENE, [3,3-]</td>
<td>53-70-3</td>
<td>0.01</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>CALCIUM COMPOUNDS</td>
<td>0.01</td>
<td>K</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>DICHLOOROACETIC ACID, [1,2-]</td>
<td>107-00-2</td>
<td>0.08</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>CALCIUM CYANAMIDE</td>
<td>158-62-7</td>
<td>10</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>DICHLOOROACETIC ACID, [1,1-]</td>
<td>75-34-3</td>
<td>1</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>CAPROLACTAM, Delisted</td>
<td>105-60-2</td>
<td>0.01</td>
<td>Y</td>
<td>N</td>
<td></td>
<td>DICHLOOROACETIC ACID, [1,1-]</td>
<td>75-34-3</td>
<td>10</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>CAPTAN</td>
<td>133-08-2</td>
<td>10</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>DICHLOOROACETIC ACID, [3,3-]</td>
<td>94-75-7</td>
<td>10</td>
<td>C</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
APPENDIX B: Table of Hazardous Air Pollutants and Screening Model Action Levels (May 3, 2012 Revision 10)

Chemicals List

<table>
<thead>
<tr>
<th>Chemical</th>
<th>CAS #</th>
<th>Group ID</th>
<th>VOC</th>
<th>PM</th>
<th>Chemical</th>
<th>CAS #</th>
<th>Group ID</th>
<th>VOC</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEXACHLOROCYCLOPENTADIENE</td>
<td>77-47-4</td>
<td>0.1</td>
<td>Y</td>
<td>N</td>
<td>NITROSOMETHYLCYCLAN, [N+]</td>
<td>62-75-9</td>
<td>0.001</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>HEXACHLOROETHANE</td>
<td>67-72-1</td>
<td>5</td>
<td>Y</td>
<td>N</td>
<td>NITROSOMETHYLCYCLAN, [N+]</td>
<td>58-89-2</td>
<td>1</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>HEXAMETHYLENE-1,5-DISOCYANATE</td>
<td>822-06-0</td>
<td>0.02</td>
<td>Y</td>
<td>N</td>
<td>NITROSO-N, N-METHYLMUREA, [N+]</td>
<td>684-93-5</td>
<td>0.0002</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>HEXAMETHYLPHOSPHORAMIDE</td>
<td>680-31-9</td>
<td>0.01</td>
<td>Y</td>
<td>N</td>
<td>OCTACHLORONAPHTHALEN</td>
<td>2234-13-1</td>
<td>0.01</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>HEXANE, [N+]</td>
<td>110-54-3</td>
<td>10</td>
<td>Y</td>
<td>N</td>
<td>PARATHION</td>
<td>96-38-2</td>
<td>0.1</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>HYDRAZINE</td>
<td>302-01-2</td>
<td>0.004</td>
<td>N</td>
<td>N</td>
<td>NITROSO-N-METHYLUREA, [N+]</td>
<td>684-93-5</td>
<td>0.0002</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>HYDROGEN CHLORIDE</td>
<td>7647-01-0</td>
<td>10</td>
<td>N</td>
<td>N</td>
<td>NITROSO-N-METHYLUREA, [N+]</td>
<td>684-93-5</td>
<td>0.0002</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>HYDROGEN FLUORIDE</td>
<td>7664-39-3</td>
<td>0.01</td>
<td>Y</td>
<td>N</td>
<td>PENTACHLORONAPHTHALEN</td>
<td>96-09-3</td>
<td>0.1</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>HYDRAZINE</td>
<td>302-01-2</td>
<td>0.004</td>
<td>N</td>
<td>N</td>
<td>PCP [POLYCHLORINATED BIPHENYLS]</td>
<td>1336-36-3</td>
<td>0.009</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>HYDROGEN CHLORIDE</td>
<td>7647-01-0</td>
<td>10</td>
<td>N</td>
<td>N</td>
<td>PENTACHLOROPHENOLBENZENES</td>
<td>82-68-8</td>
<td>0.3</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>HYDROGEN FLUORIDE</td>
<td>7664-39-3</td>
<td>0.01</td>
<td>N</td>
<td>N</td>
<td>PENTACHLOROPHENOLBENZENES</td>
<td>82-68-8</td>
<td>0.3</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>HYDRAZINE</td>
<td>302-01-2</td>
<td>0.004</td>
<td>N</td>
<td>N</td>
<td>PARATHION</td>
<td>108-52-5</td>
<td>0.1</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>HYDRAZINE</td>
<td>302-01-2</td>
<td>0.004</td>
<td>N</td>
<td>N</td>
<td>PENTACHLOROPHENOLBENZENES</td>
<td>106-50-3</td>
<td>10</td>
<td>G</td>
<td>Y</td>
</tr>
<tr>
<td>HYDRAZINE</td>
<td>302-01-2</td>
<td>0.004</td>
<td>N</td>
<td>N</td>
<td>PENTACHLOROPHENOLBENZENES</td>
<td>106-50-3</td>
<td>10</td>
<td>G</td>
<td>Y</td>
</tr>
<tr>
<td>HYDRAZINE</td>
<td>302-01-2</td>
<td>0.004</td>
<td>N</td>
<td>N</td>
<td>PENTACHLOROPHENOLBENZENES</td>
<td>106-50-3</td>
<td>10</td>
<td>G</td>
<td>Y</td>
</tr>
<tr>
<td>HYDRAZINE</td>
<td>302-01-2</td>
<td>0.004</td>
<td>N</td>
<td>N</td>
<td>PENTACHLOROPHENOLBENZENES</td>
<td>106-50-3</td>
<td>10</td>
<td>G</td>
<td>Y</td>
</tr>
</tbody>
</table>

Notes

- The SMAL for radionuclides is defined as the effective dose equivalent to 0.3 millirems per year for 7 years exposure associated with a cancer risk of 1 in 1 million.
- The SMAL for polychlorinated biphenyls (Aroclors) is defined as the effective dose equivalent to 0.3 millirems per year for 7 years exposure associated with a cancer risk of 1 in 1 million.
Mr. Stephen McClure
Director, Environmental and Safety
Gardner Denver, Inc. - Sedalia Plant
1800 Gardner Expressway
Quincy, IL 62305

RE: New Source Review Permit - Project Number: 2013-06-009

Dear Mr. McClure:

Enclosed with this letter is your permit to construct. Please study it carefully and refer to Appendix A for a list of common abbreviations and acronyms used in the permit. Also, note the special conditions, if any, on the accompanying pages. The document entitled, "Review of Application for Authority to Construct," is part of the permit and should be kept with this permit in your files. Operation in accordance with these conditions, your new source review permit application and with your amended operating permit is necessary for continued compliance. The reverse side of your permit certificate has important information concerning standard permit conditions and your rights and obligations under the laws and regulations of the State of Missouri.

If you have any questions regarding this permit, please do not hesitate to contact J Luebbert, at the Department of Natural Resources’ Air Pollution Control Program, P.O. Box 176, Jefferson City, MO 65102 or at (573) 751-4817. Thank you for your attention to this matter.

Sincerely,

AIR POLLUTION CONTROL PROGRAM

Susan Heckenkamp
New Source Review Unit Chief

SH:jll

Enclosures

c: Kansas City Regional Office
PAMS File: 2013-06-009

Permit Number: