STATE OF MISSOURI

DEPARTMENT OF NATURAL RESOURCES

MISSOURI AIR CONSERVATION COMMISSION

PERMIT TO CONSTRUCT

Under the authority of RSMo 643 and the Federal Clean Air Act the applicant is authorized to construct the air contaminant source(s) described below, in accordance with the laws, rules and conditions as set forth herein.

Permit Number: 062	016-013	Project Number: 2016-02-051 Installation Number: 201-0128
Parent Company:	Armor Lite Trailer M	lanufacturing, LLC
Parent Company Address:	1190 State Highway	/ H, Sikeston, MO 63801
Installation Name:	Armor Lite Trailer M	anufacturing, LLC
Installation Address:	1190 State Highway	H, Sikeston, MO 63801
Location Information:	Scott County (S3, T	26N, R14W)

Application for Authority to Construct was made for:

The use of alternative materials in the surface coating operation. This review was conducted in accordance with Section (6), Missouri State Rule 10 CSR 10-6.060, *Construction Permits Required*.

Standard Conditions (on reverse) are applicable to this permit.

Standard Conditions (on reverse) and Special Conditions are applicable to this permit.

Prépared by Ryan Schott New Source Review Unit

DOB. Hes

Director or Designee Department of Natural Resources JUN 2 2 2016

Effective Date

STANDARD CONDITIONS:

Permission to construct may be revoked if you fail to begin construction or modification within two years from the effective date of this permit. Permittee should notify the Enforcement and Compliance Section of the Air Pollution Control Program if construction or modification is not started within two years after the effective date of this permit, or if construction or modification is suspended for one year or more.

You will be in violation of 10 CSR 10-6.060 if you fail to adhere to the specifications and conditions listed in your application, this permit and the project review. In the event that there is a discrepancy between the permit application and this permit, the conditions of this permit shall take precedence. Specifically, all air contaminant control devices shall be operated and maintained as specified in the application, associated plans and specifications.

You must notify the Enforcement and Compliance Section of the Department's Air Pollution Control Program of the anticipated date of startup of this (these) air contaminant sources(s). The information must be made available within 30 days of actual startup. Also, you must notify the Department's regional office responsible for the area within which you are located within 15 days after the actual startup of this (these) air contaminant source(s).

A copy of the permit application and this permit and permit review shall be kept at the installation address and shall be made available to Department's personnel upon request.

You may appeal this permit or any of the listed special conditions to the Administrative Hearing Commission (AHC), P.O. Box 1557, Jefferson City, MO 65102, as provided in RSMo 643.075.6 and 621.250.3. If you choose to appeal, you must file a petition with the AHC within 30 days after the date this decision was mailed or the date it was delivered, whichever date was earlier. If any such petition is sent by registered mail or certified mail, it will be deemed filed on the date it is mailed. If it is sent by any method other than registered mail or certified mail, it will be deemed filed on the date it is received by the AHC.

If you choose not to appeal, this certificate, the project review and your application and associated correspondence constitutes your permit to construct. The permit allows you to construct and operate your air contaminant sources(s), but in no way relieves you of your obligation to comply with all applicable provisions of the Missouri Air Conservation Law, regulations of the Missouri Department of Natural Resources and other applicable federal, state and local laws and ordinances.

The Air Pollution Control Program invites your questions regarding this air pollution permit. Please contact the Construction Permit Unit using the contact information below.

> Contact Information: Missouri Department of Natural Resources Air Pollution Control Program P.O. Box 176 Jefferson City, MO 65102-0176 (573) 751-4817

The regional office information can be found at the following website: <u>http://dnr.mo.gov/regions/</u>

SPECIAL CONDITIONS:

The permittee is authorized to construct and operate subject to the following special conditions:

The special conditions listed in this permit were included based on the authority granted the Missouri Air Pollution Control Program by the Missouri Air Conservation Law (specifically 643.075) and by the Missouri Rules listed in Title 10, Division 10 of the Code of State Regulations (specifically 10 CSR 10-6.060). For specific details regarding conditions, see 10 CSR 10-6.060 paragraph (12)(A)10. "Conditions required by permitting authority."

1. Superseding Condition

The conditions of this permit supersede the following special conditions found in the previously issued documents:

- 1) Construction Permit 102013-001 Special Conditio
- 2) Permit Correction 102013-001A Sp

Special Conditions 2 & 5 Special Condition 2

- 2. Use of Alternative Coatings in the Spray Coating Booth
 - A. When considering using an alternative coating in the spray booth that is different than a material listed in the Application for Authority to Construct, Armor Lite Trailer Manufacturing, LLC shall calculate the potential emissions of VOCs and all individual HAP in the alternative material.
 - B. Armor Lite Trailer Manufacturing, LLC shall seek approval from the Air Pollution Control Program before use of the alternative material in the following cases:
 - 1) If the potential VOC emissions for the alternative material is equal to or greater than 174.44 tons per year, or
 - If the potential individual HAP emissions for the alternative material are equal to or greater than the screening model action level (SMAL) for any chemical listed in Appendix B or the most recent HAP SMAL table, located at <u>http://dnr.mo.gov/env/apcp/docs/cp-hapsmaltbl6.pdf</u>
 - C. Attachment A or an equivalent form, such as an electronic form, approved by the Air Pollution Control Program shall be used to demonstrate compliance with Special Condition 2.B.
- 3. Spray Gun Restriction Armor Lite Trailer Manufacturing, LLC shall operate no more than two spray guns, each with a maximum design rate of 3.25 gallons per hour, simultaneously in the spray booth.
- 4. Solvent Recovery Requirement
 - A. Armor Lite Trailer Manufacturing, LLC shall collect at least 85% of the purge solvent, Solvent3, and ship it offsite as hazardous waste.

Project No. 2016-02-051 Permit No.

SPECIAL CONDITIONS:

The permittee is authorized to construct and operate subject to the following special conditions:

- B. Armor Lite Trailer Manufacturing, LLC shall demonstrate compliance with Special Condition 4.A by keeping a written or electronic record of the total amount of Solvent3 used, collected, and disposed.
- 5. Record Keeping and Reporting Requirements
 - A. Armor Lite Trailer Manufacturing, LLC shall maintain all records required by this permit for not less than five years and shall make them available immediately to any Missouri Department of Natural Resources' personnel upon request. These records shall include SDS for all materials used.
 - B. Armor Lite Trailer Manufacturing, LLC shall report to the Air Pollution Control Program's Compliance/ Enforcement Section, P.O. Box 176, Jefferson City, MO 65102, no later than 10 days after the end of the month during which any record required by this permit show an exceedance of a limitation imposed by this permit.

REVIEW OF APPLICATION FOR AUTHORITY TO CONSTRUCT AND OPERATE SECTION (6) REVIEW Project Number: 2016-02-051 Installation ID Number: 201-0128 Permit Number:

Installation Address: Armor Lite Trailer Manufacturing, LLC 1190 State Highway H Sikeston, MO 63801 Scott County (S3, T26N, R14W) Parent Company: Armor Lite Trailer Manufacturing, LLC 1190 State Highway H Sikeston, MO 63801

REVIEW SUMMARY

- Armor Lite Trailer Manufacturing, LLC has applied for authority to use alternative materials in the surface coating operation.
- The application was deemed complete on March 24, 2016.
- HAP emissions are expected from the proposed equipment. HAPs of concern include 2-butoxyethyl acetate, cumene, ethyl benzene, methanol, methyl methacrylate, methylenediphenyl diisocyanate (MDI), methyl isobutyl ketone (MIBK), styrene, toluene, and xylene.
- None of the New Source Performance Standards (NSPS) apply to the installation.
- 40 CFR 63 Subpart HHHHHH (MACT 6H) National Emission Standards for Hazardous Air Pollutants: Paint Stripping and Miscellaneous Surface Coating Operations at Area Sources applies to this facility because at least one of the provided coatings contains a target HAP.
- A spray coating booth equipped with a cartridge filter is being used to control particulate matter emissions from the equipment in this permit, as required by Construction Permit 102013-001.
- This review was conducted in accordance with Section (6) of Missouri State Rule 10 CSR 10-6.060, *Construction Permits Required*. Potential emissions of VOCs are above the de minimis level but below the major source level.
- This installation is located in Scott County, an attainment area for all criteria pollutants.
- This installation is not on the List of Named Installations found in 10 CSR 10-6.020(3)(B), Table 2. The installation's major source level is 250 tons per year and fugitive emissions are not counted toward major source applicability.

- Emissions testing is not required for the equipment.
- Submittal of an update to your Part 70 Operating Permit application is required within 90 days after issuance of this permit.
- Approval of this permit is recommended with special conditions.

INSTALLATION DESCRIPTION

Armor Lite Trailer Manufacturing, LLC operates a facility in Sikeston, Missouri that manufactures various types of steel semi-trailers. Operations at the facility include plasma cutting, welding, abrasive blasting, and surface coating. Armor Lite Trailer Manufacturing, LLC is considered a minor source for construction permitting and has applied for a Part 70 Operating Permit under project 2014-10-013.

The following New Source Review permits have been issued to Armor Lite Trailer Manufacturing, LLC from the Air Pollution Control Program:

	Uly
Permit Number	Description
102013-001	New trailer manufacturing facility
102013-001A	Permit corrections for Attachment B and HAP emissions from welding

Table 1: Permit History

PROJECT DESCRIPTION

In the previous construction permit 102013-001 (and the subsequent permit correction 102013-001A), the potential to emit for the surface coating operation (EU-01) was based upon the maximum number of trailers capable of being produced and a limited amount of historical data for coating usage. The facility has since operated for a longer period of time and adjusted the coating materials being used to minimize HAP emissions, in order to remain an area source. Some of the lower HAP coatings, however, are higher in VOC content, as the HAP constituents were replaced by non-HAP VOCs. Therefore, the potential to emit for VOCs has increased above the level allowed in the previous construction permit.

For this project, Armor Lite Trailer Manufacturing, LLC is requesting to use the maximum design rate of the two spray guns (3.25 gallons per hour each) to determine the potential to emit of the surface coating operation, instead of using the previous maximum trailer production rate. Additionally, the facility will no longer include the amount of recovered purge solvent as being emitted, since it is collected and shipped offsite as hazardous waste. This change in coating material usage and calculation method will not affect any processes or emission sources at the facility other than the surface coating operation (EU-01).

EMISSIONS/ CONTROLS EVALUATION

Potential emissions from the surface coating operation were calculated using a mass balance approach. The two spray guns operate simultaneously at a rate of 3.25 gallons per hour, each. A variety of coating materials can be sprayed in the booth, but based on historical usage data, Armor Lite Trailer Manufacturing, LLC has calculated a percentage of the maximum annual amount sprayed for each coating material. This distribution is not expected to significantly fluctuate, because all coatings are sprayed in nearly the same ratio for all types of trailers. Also, any significant change in coating material ratio would not achieve a successful end coating, due to the reactions that must occur between the correct ranges of material concentrations. The amount of each coating material sprayed per year was multiplied by its respective VOC/ HAP content (taken from the SDS) to find the emission rate. It was assumed that 100% of VOCs and HAPs are emitted, except for those found in Solvent3. At least 85% of Solvent3 is collected and shipped offsite after being sprayed, so only 15% was considered to be emitted.

Particulate emissions from spray coating were also calculated using a mass balance approach. The solids content of each coating material was taken from the SDS, or if unlisted, was assumed to be equal to the density of the material minus the volatile content. The amount of each coating material sprayed per year was multiplied by its respective solids content to find the emission rate. The transfer efficiency of the spray guns was taken to be 50%. The spray coating booth has a permanent total enclosure, as well as a cartridge filter that controls 95% of all particulates, as required by Special Conditions 3 & 4 in Construction Permit 102013-001. All particulate was assumed to be $PM_{2.5}$.

By using the maximum design rate of the spray guns to calculate the emissions of the new coating materials used in the spray booth, the potential particulate, VOC, and HAP emission rates have changed. Controlled particulate emissions are now below de minimis levels, uncontrolled VOC emissions have increased, but still remain below major source levels, and all uncontrolled HAP emissions are now below their respective SMALs. This has removed all requirements for pollutant emissions tracking from the previous construction permit and permit correction.

The following table provides an emissions summary for this project. Existing potential emissions were taken from the previous construction permit (102013-001A). Existing actual emissions were taken from the installation's 2014 EIQ. Potential emissions of the project represent the potential of surface coating operation (EU-01), using the new coating materials and new calculation method, assuming continuous operation (8,760 hours per year). The new installation conditioned potential emissions represent the total emissions from the facility, using the current potential emissions of the project and subtracting the emissions from the surface coating operation calculated in the previous construction permit.

Pollutant	Regulatory De Minimis Levels / SMAL	Existing Potential Emissions	Existing Actual Emissions (2014 EIQ)	Potential Emissions of the Project	New Installation Conditione d Potential			
PM	25.0	<10.0	N/D	5.04	9.54			
PM ₁₀	15.0	<10.0	1.20	5.04	9.54			
PM _{2.5}	10.0	<10.0	0.63	5.04	9.54			
SO _x	40.0	0.008	N/A	N/A	0.008			
NO _x	40.0	3.84	0.30	N/A	3.84			
VOC	40.0	130.44	16.83	174.44	174.44			
CO	100.0	1.07	0.02	N/A	1.07			
2-Butoxyethyl Acetate	10.0 / 5	<5.0	N/D	0.68	0.68			
Cumene	10.0 / 10	N/D	N/D	1.03	1.03			
Ethyl Benzene	10.0 / 10	N/D	N/D	2.94	2.94			
Methanol	10.0 / 10	N/D	N/D	0.94	0.94			
Methyl Methacrylate	10.0 / 10	N/D	N/D	0.001	0.001			
MDI	10.0 / 0.1	N/D	N/D	0.05	0.05			
MIBK	10.0 / 10	N/D	N/D	1.41	1.41			
Styrene	10.0 / 1	N/D	N/D	0.001	0.001			
Toluene	10.0 / 10	N/D	N/D	2.99	2.99			
Xylene	10.0 / 10	N/D	N/D	9.49	9.49			
Manganese Metal	10.0 / 0.8	0.39	N/D	N/A	0.39			
Total HAPs	25.0	8.51	N/D	19.52	20.06			

Table 2: Emissions Summary (tons per year)

N/A = Not Applicable; N/D = Not Determined

PERMIT RULE APPLICABILITY

This review was conducted in accordance with Section (6) of Missouri State Rule 10 CSR 10-6.060, *Construction Permits Required*. Potential emissions of VOCs are above the de minimis level but below the major source level.

APPLICABLE REQUIREMENTS

Armor Lite Trailer Manufacturing, LLC shall comply with the following applicable requirements. The Missouri Air Conservation Laws and Regulations should be

consulted for specific record keeping, monitoring, and reporting requirements. Compliance with these emission standards, based on information submitted in the

application, has been verified at the time this application was approved. For a complete list of applicable requirements for your installation, please consult your operating permit.

GENERAL REQUIREMENTS

- Submission of Emission Data, Emission Fees and Process Information, 10 CSR 10-6.110
 - Per 10 CSR 10-6.110(4)(B)2.A, a full EIQ is required annually
- Operating Permits, 10 CSR 10-6.065
- Restriction of Particulate Matter to the Ambient Air Beyond the Premises of Origin, 10 CSR 10-6.170
- Restriction of Emission of Visible Air Contaminants, 10 CSR 10-6.220
- Restriction of Emission of Odors, 10 CSR 10-6.165

SPECIFIC REQUIREMENTS

- MACT Regulations, 10 CSR 10-6.075
 - National Emission Standards for Hazardous Air Pollutants: Paint Stripping and Miscellaneous Surface Coating Operations at Area Sources, 40 CFR Part 63, Subpart HHHHHH

STAFF RECOMMENDATION

On the basis of this review conducted in accordance with Section (6), Missouri State Rule 10 CSR 10-6.060, *Construction Permits Required*, it is recommended that this permit be granted with special conditions.

PERMIT DOCUMENTS

The following documents are incorporated by reference into this permit:

• The Application for Authority to Construct form, dated February 17, 2016, received February 23, 2016, designating Armor Lite Trailer Manufacturing, LLC as the owner and operator of the installation.

Armor Lite Trailer Manufacturing, LLC Scott County (S3, T26N, R14W) Project Number: 2016-02-051 Installation ID Number: 201-0128 Permit Number:

Coating name:

Date: (copy this sheet as needed)

Α	В	С	D	E	F	G	Н	Ι	J
Individual HAP Name and CAS No.	HAP is also PM (yes / no)	Individual HAP Content (max weight %)	Maximum Application Rate (Ib coating per hour)	Overall PM Control Efficiency (%)	Individual HAP PTE (Ib/hr)	Individual HAP PTE (tons per year)	Individual HAP SMAL (tons per year)	Coating VOC (weight %)	Coating VOC PTE (tons per year)
Benzene 71-43-2	no	2.0%	1 507	N/A	0.032	0.14	2.0	26 61%	2.54
Cobalt 2-Ethylhexanoate 136-52-7	yes	0.5%	1.367	97.5%	0.0002	0.00087	0.1	30.01%	2.54

- A. Record the all individual HAPs from this single coating MSDS.
- B. Compare the HAP to Appendix B for verification as particulate matter.
- C. Record the maximum weight percent of each HAP from the MSDS.
- D. Record the maximum application rate with units of lbs of coating per hour.
- E. The overall PM control efficiency includes the air atomized spray gun transfer efficiency (50%), booth capture efficiency (100%), and exhaust filter control efficiency (95%): 50% + (1 - 50%) x 100% x 95% = 97.5%
- F. Calculate the particulate matter HAP potential to emit: $F = C \times D \times (1 E)$. Otherwise, calculate the volatile HAP potential to emit: $F = C \times D$.
- G. Calculate the Individual HAP PTE (tons per year): $G = F \times (8,760 / 2,000)$.
- H. Record the individual HAP SMAL from Appendix B or the most recent HAP SMAL Table, located at http://dnr.mo.gov/env/apcp/docs/cp-hapsmaltbl6.pdf Seek approval from the Air Pollution Control Program New Source Review Unit before using this coating if the individual HAP potential to emit is greater than the SMAL.
- I. Record or calculate the coating's VOC weight % from the MSDS. Verify VOC status according to 10 CSR 10-6.020 Definitions and Common Reference Tables (2)(V)13.
- J. Calculate the VOC potential to emit: J = D x I x (8,760 / 2,000). Seek approval from the Air Pollution Control Program New Source Review Unit before using this coating if the VOC potential to emit is greater than 174.44 tons per year.

APPENDIX A

Abbreviations and Acronyms

% percent °F degrees Fahrenheit acfm actual cubic feet per minute **BACT** Best Available Control Technology **BMPs** Best Management Practices Btu..... British thermal unit CAM Compliance Assurance Monitoring CAS...... Chemical Abstracts Service **CEMS** Continuous Emission Monitor System CFR Code of Federal Regulations CO carbon monoxide CO₂..... carbon dioxide CO2e..... carbon dioxide equivalent COMS..... Continuous Opacity Monitoring System CSR...... Code of State Regulations dscf dry standard cubic feet EIQ Emission Inventory Questionnaire **EP**..... Emission Point EPA Environmental Protection Agency EU..... Emission Unit fps feet per second ft feet GACT Generally Available Control Technology GHG Greenhouse Gas gpm...... gallons per minute gr..... grains GWP...... Global Warming Potential HAP...... Hazardous Air Pollutant hr hour hp horsepower Ib pound lbs/hr..... pounds per hour **MACT** Maximum Achievable Control Technology µg/m³..... micrograms per cubic meter

m/s meters per second Mgal 1,000 gallons MW megawatt MHDR maximum hourly design rate MMBtu.... Million British thermal units **MMCF**..... million cubic feet MSDS Material Safety Data Sheet NAAQS... National Ambient Air Quality Standards **NESHAPs** National Emissions Standards for Hazardous Air Pollutants NO_x..... nitrogen oxides **NSPS**..... New Source Performance Standards NSR New Source Review PM particulate matter **PM**_{2.5}..... particulate matter less than 2.5 microns in aerodynamic diameter PM₁₀..... particulate matter less than 10 microns in aerodynamic diameter **ppm**..... parts per million **PSD**..... Prevention of Significant Deterioration PTE..... potential to emit **RACT**..... Reasonable Available Control Technology RAL Risk Assessment Level SCC Source Classification Code scfm standard cubic feet per minute SDS Safety Data Sheet SIC...... Standard Industrial Classification **SIP**...... State Implementation Plan **SMAL** Screening Model Action Levels SO_x..... sulfur oxides SO₂..... sulfur dioxide tph tons per hour tpy tons per year VMT vehicle miles traveled **VOC**...... Volatile Organic Compound

APPENDIX B: Table of Hazardous Air Pollutants and Screening Model Action Levels (May 3, 2012 Revision 10)

Chemical	CAS #	SMAL (tons/yr)	Group ID	voc	PM	Chemical	CAS#	SMAL (tons/yr)	Grou p ID	voc	PM	Chemical	CAS#	SMAL (tons/yr)	Group	voo	C PM
ACETALDEHYDE	75-07-0	9		Y	N	CARBARYL	63-25-2	10	V	Y	Υ	DICHLOROPROPANE , [1,2-]	78-87-5	1		Y	N
ACETAMIDE	60-35-5	1		Υ	Ν	CARBON DISULFIDE	75-15-0	1		Υ	Ν	DICHLOROPROPENE, [1,3-]	542-75-8	1		Y	N
ACETONITRILE	75-05-8	4		Υ	N	CARBON TETRACH LORIDE	58-23-5	1		Υ	Ν	DICHLORVOS	62-73-7	0.2		Y	N
ACETOPHENONE	98-88-2	1		Υ	N	CARBONYL SULFIDE	463-58-1	5		Υ	Ν	DIETHANOLAMINE	111-42-2	5		Υ	N
ACETYLAMINOFLUORINE, [2-]	63-98-3	0.005	V	γ	Υ	CATECHOL	120-80-9	5		Υ	Ν	DIETHYL SULFATE	64-67-5	1		Y	N
ACROLEIN	107-02-8	0.04		Υ	N	CHLORAMBEN	133-90-4	1		Υ	Υ	DIETHYLENE GLYCOL MONOBUTYL ETHER	112-34-5	5	Ρ	Υ	N
AC RYLAM ID E	79-08-1	0.02		Υ	N	CHLORDANE	57-74-9	0.01		Υ	Y	DIME THOX YBE NZID INE , [3,3-]	119-90-4	0.1	V	Y	Y
ACRYLIC ACID	79-10-7	0.6		Υ	Ν	CHLORINE	7782-50-5	0.1		N	N	DIME THYL BENZIDINE, [3,3-]	119-93-7	0.008	V	Y	Υ
ACRYLONITRILE	107-13-1	0.3		γ	Ν	CHLOROACETIC ACID	79-11-8	0.1		Υ	Ν	DIME THYL CARBAMOYL CHLORIDE	79-44-7	0.02		Υ	N
ALLYL CHLORIDE	107-05-1	1		Υ	Ν	CHLOROACETOPHENONE, [2-]	532-27-4	0.06		Υ	N	DIME THYL FORM AM IDE	68-12-2	1		Υ	N
AMINOBIPHENYL, [4-]	92-87-1	1	v	Y	Ν	CHLOROBENZENE	108-90-7	10		Y	N	DIME THYL HYDRAZINE, [1,1-]	57-14-7	0.008		Υ	N
ANILINE	62-53-3	1		Υ	N	CHLOROBENZILATE	510-15-8	0.4	V	Υ	Υ	DIME THYL PHTHALATE	131-11-3	10		Υ	N
ANISIDINE, [OR TH 0-]	90-04-0	1		Y	Ν	CHLOROFORM	67-66-3	0.9		Y	N	DIME THYL SULFATE	77-78-1	0.1		Y	N
ANTHRACENE	120-12-7	0.01	v	Y	N	CHLOROME THYL METHYL ETHER	107-30-2	0.1		Y	Ν	DIME THYLAM INOAZOBENZENE, [4-]	60-11-7	1		Υ	Ν
ANTIMONYCOMPOUNDS		5	н	N	Υ	CHLOROPRENE	126-99-8	1		Y	Ν	DIME THYLANILINE, [N-N-]	121-69-7	1		Y	N
ANTIM ONY PENTAFLU ORIDE	7783-70-2	0.1	н	Ν	Υ	CHROMIUM (VI) COMPOUNDS		0.002	L	Ν	Υ	DINITRO-O-CRE SOL, [4,6-] (Note 6)	534-52-1	0.1	E	Y	Y
ANTIMONY POTASSIUM TARTRATE	28300-74-5	1	н	N	Υ	CHROMIUM COMPOUNDS		5	L	Ν	Υ	DINITROPHE NOL, [2,4-]	51-28-5	1		Y	N
ANTIMONYTRIOXIDE	1309-84-4	1	н	N	Υ	CHRYSENE	218-01-9	0.01	V	Y	Ν	DINITROTOLUE NE, [2,4-]	121-14-2	0.02		Υ	N
ANTIMONYTRISULFIDE	1345-04-8	0.1	н	N	Y	COBALTCOMPOUNDS		0.1	М	Ν	Υ	DIOXANE, [1,4-]	123-91-1	6		Y	N
ARSENIC COMPOUNDS		0.005	1	N	Υ	COKE OVEN EMMISIONS	8007-45-2	0.03	N	Υ	N	DIPHENYLHYDRAZINE, [1,2-]	122-66-7	0.09	V	Y	Y
ASBESTOS	1332-21-4	0	A	Ν	Υ	CRESOL, [META-]	108-39-4	1	в	Υ	Ν	DIPHENYLMETHANE DISOCYANATE, [4,4-]	101-68-8	0.1	V	Y	N
BENZ(A)ANTHRACENE	58-55-3	0.01	v	Υ	Ν	CRESOL, [ORTHO-]	95-48-7	1	в	Υ	Ν	EPICHLOROHYDRIN	106-89-8	2		Υ	N
BENZENE	71-43-2	2		Υ	N	CRESOL, [PARA-]	106-44-5	1	в	Y	Ν	ETHOXYETHANOL, [2-]	110-80-5	10	р	Y	N
BENZIDINE	92-87-5	0.0003	V	Υ	Ν	CRESOLS (MIXED ISOMERS)	1319-77-3	1	В	Υ	Ν	ETHOXYETHYLACETATE, [2-]	111-15-9	5	Ρ	Υ	N
BENZO (A)PYRENE	50-32-8	0.01	V	Y	Ν	CUMENE	98-82-8	10		Υ	N	ETHYL ACRYLATE	140-88-5	1		Υ	N
BENZO (B)FLUORANTHENE	205-99-2	0.01	V	Υ	N	CYANIDE COMPOUNDS		0.1	0	Υ	Ν	ETH YL BENZENE	100-41-4	10		Υ	N
BENZO(K)FLUORANTHENE	207-08-9	0.01	V	Υ	Ν	DDE	72-55-9	0.01	V	Υ	Υ	ETHYL CHLORIDE	75-00-3	10		Υ	Ν
BENZOTRICHLORIDE	98-07-7	0.006		Υ	Ν	DI(2-ETHYLHEXYL) PHTHALATE, (DEHP)	117-81-7	5		Υ	Ν	ETHYLENE GLYCOL	107-21-1	10		Υ	N
BEN ZYL CHLORIDE	100-44-7	0.1		γ	Ν	DIAMINOTOLUENE, [2,4-]	95-80-7	0.02		Y	N	ETHYLENE GLYCOLMONOBUTYLETHER (Delisted)	111-76-2				
BERYLLIUM COMPOUNDS		0.008	J	Ν	Y	D IAZOMETHANE	334-88-3	1		Y	N	ETHYLENE GLYCOL MONOHEXYL ETHER	112-25-4	5	Р	Υ	N
BERYLLIUM SALTS		2E-05	Ĵ	Ν	Υ	DIBENZ(A,H)ANTHRACENE	53-70-3	0.01	V	Υ	N	ETHYLENE MINE [AZIRIDINE]	151-56-4	0.003		Υ	N
BIPHENYL, [1,1-]	92-52-4	10	V	γ	N	DIOXINS/FURANS		6E-07	D,V	Y	Ν	ETHYLENE OXIDE	75-21-8	0.1		Y	N
BIS (CHLOROETHYL)E THER	111-44-4	0.06		Υ	N	DIBENZOFURAN	132-64-9	5	V	Υ	Ν	ETHYLENE THIOUREA	98-45-7	0.6		Υ	Y
BIS (CHLOROMETHYL)ETHER	542-88-1	0.0003		Υ	Ν	DIBROM 0-3-CHLOROPROPANE, [1,2-]	96-12-8	0.01		Y	Ν	FORMALDEHYDE	50-00-0	2		Y	N
BROMOFORM	75-25-2	10		Y	N	DIBROMOETHANE, [1,2-]	108-93-4	0.1		Y	Ν	GLYCOLETHER (ETHYLENE GLYCOLETHERS)		5	Ρ	Y	N
BROMOMETHANE	74-83-9	10		Y	N	DIBUTYL PHTHALATE	84-74-2	10		Y	Υ	GLYCOLETHER (DIETHYLENE GLYCOLETHERS)		5	P	Y	N
BUTADIE NE, [1,3-]	106-99-0	0.07		Y	Ν	DICHLOROBENZENE, [1,4-]	108-46-7	3		Υ	Ν	HEPTACHLOR	76-44-8	0.02		Y	N
BUTOXYETHANOL ACETATE, [2-]	112-07-2	5	Ρ	Υ	Ν	DICHLOROBENZIDENE, [3,3-]	91-94-1	0.2	V	Y	Υ	HEXACHLOROBE NZE NE	118-74-1	0.01		Υ	Ν
BUTYLENE OXIDE , [1,2-]	106-88-7	1		Υ	Ν	DICHLOROETHANE, [1,1-]	75-34-3	1	[Y	Ν	HE XACHLOROBU TADIE NE	87-68-3	0.9		Y	N
CADMIUM COMPOUNDS		0.01	к	N	Υ	DICHLOROETHANE, [1,2-]	107-08-2	0.8		Y	Ν	HEXACHLOROCYCLOHEXANE, [ALPHA-]	319-84-6	0.01	F	Υ	N
CALCIUM CYANAMIDE	156-62-7	10		Y	Y	DICHLOROETHYLE NE, [1,1-]	75-35-4	0.4		Y	Ν	HEXACHLOROCYCLOHEXANE, [BETA-]	319-85-7	0.01	F	Υ	N
CAPROLACTAM (Delisted)	105-60-2					DICHLOROMETHANE	75-09-2	10		N	Ν	HEXACHLOROCYCLOHEXANE, [DE LTA-]	319-86-8	0.01	F	Y	N
CAPTAN	133-06-2	10		Y	Y	DICHLOROPHENOXYACETIC ACID, [2,4-]	94-75-7	10	С	Y	Y	HEXACHLOROCYCLOHEXANE, [TECHNICAL]	608-73-1	0.01	F	Υ	Ν

APPENDIX B: Table of Hazardous Air Pollutants and Screening Model Action Levels (May 3, 2012 Revision 10)

Chemical	CAS #	SMAL (tons/yr)	Group ID	VOC	РМ	Chemical	CAS #	SMAL (tons/yr)	Group ID	VOC	РМ		Chemical	CAS #	SMAL (tons/yr)	Group ID	voc	РМ
HEXACHLOROCYCLOPENTADIENE	77-47-4	0.1		Y	N	NITROSODIMETHYLAMINE, [N-]	62-75-9	0.001		Y	N	TRIMETHYLPE	NTANE, [2,2,4-]	540-84-1	5		Y	N
HEXACHLOROETHANE	67-72-1	5		Y	Ν	NITROSOMORPHOLINE, [N-]	59-89-2	1		Y	N	URETHANE [E	THYL CARBAMATE]	51-79-6	0.8		Y	Ν
HEXAMETHYLENE,-1,6-DIISOCYANATE	822-06-0	0.02		Y	N	NITROSO-N-METHYLUREA, [N-]	684-93-5	0.0002		Y	N	VINYL ACETAT	E	108-05-4	1		Y	N
HEXAMETHYLPHOSPHORAMIDE	680-31-9	0.01		Y	N	OCTACHLORONAPTHALENE	2234-13-1	0.01	v	Y	N	VINYL BROMID	E	593-60-2	0.6		Y	N
HEXANE, [N-]	110-54-3	10		Y	N	PARATHION	56-38-2	0.1		Y	Y	VINYL CHLORI)E	75-01-4	0.2		Y	N
HYDRAZINE	302-01-2	0.004		Ν	Ν	PCB [POLYCHLORINATED BIPHENYLS]	1336-36-3	0.009	х	Y	Y	XYLENE, [MET	\-]	108-38-3	10	G	Y	N
HYDROGEN CHLORIDE	7647-01-0	10		Ν	Ν	PENTACHLORONITROBENZENE	82-68-8	0.3		Y	N	XYLENE, [ORTI	łO-]	95-47-6	10	G	Y	Ν
HYDROGEN FLUORIDE	7664-39-3	0.1		Ν	Ν	PENTACHLOROPHENOL	87-86-5	0.7		Y	N	XYLENE, [PAR	\-]	106-42-3	10	G	Y	N
HYDROQUINONE	123-31-9	1		Y	N	PHENOL	108-95-2	0.1		Y	N	XYLENES (MIX	ED ISOMERS)	1330-20-7	10	G	Y	Ν
INDENO(1,2,3CD)PYRENE	193-39-5	0.01	V	Y	Ν	PHENYLENEDIAMINE, [PARA-]	106-50-3	10		Y	Ν							
ISOPHORONE	78-59-1	10		Y	Ν	PHOSGENE	75-44-5	0.1		Y	Ν							
LEAD COMPOUNDS		0.01	Q	Ν	Y	PHOSPHINE	7803-51-2	5		N	Ν							
LINDANE [GAMMA-HEXACHLOROCYCLOHEXANE]	58-89-9	0.01	F	Y	N	PHOSPHOROUS (YELLOW OR WHITE)	7723-14-0	0.1		N	Ν		Legend					
MALEIC ANHYDRIDE	108-31-6	1		Y	N	PHTHALIC ANHYDRIDE	85-44-9	5		Y	Ν	Group	ID Aggregate Group Name					
MANGANESE COMPOUNDS		0.8	R	N	Y	POLYCYLIC ORGANIC MATTER		0.01	V	Y	Ν	A	Asbestos					
MERCURYCOMPOUNDS		0.01	s	Ν	N	PROPANE SULTONE, [1,3-]	1120-71-4	0.03		Y	Υ	В	Cresols/Cresylic Acid (isomers a	nd mixtures)				
METHANOL	67-56-1	10		Y	N	PROPIOLACTONE, [BETA-]	57-57-8	0.1		Y	Ν	С	2,4 - D, Salts and Esters					
METHOXYCHLOR	72-43-5	10	v	Y	Y	PROPIONALDEHYDE	123-38-6	5		Y	Ν	D	Dibenzofurans, Dibenzodioxins					
METHOXYETHANOL, [2-]	109-86-4	10	Р	Y	N	PROPOXUR [BAYGON]	114-26-1	10		Y	Υ	E	4, 6 Dinitro-o-cresol, and Salts					
METHYL CHLORIDE	74-87-3	10		Y	N	PROPYLENE OXIDE	75-56-9	5		Y	Ν	F	Lindane (all isomers)					
METHYL ETHYL KETONE (Delisted)	78-93-3					PROPYLENEIMINE, [1,2-]	75-55-8	0.003		Y	Ν	G	G Xylenes (all isomers and mixtures)					
METHYL HYDRAZINE	60-34-4	0.06		Y	N	QUINOLINE	91-22-5	0.006		Y	Ν	н	Antimony Compounds					
METHYL IODIDE	74-88-4	1		Y	N	QUINONE	106-51-4	5		Y	Ν	I	Arsenic Compounds					
METHYL ISOBUTYL KETONE	108-10-1	10		Y	N	RADIONUCLIDES		Note 1	Y	N	Υ	J	Beryllium Compounds					
METHYL ISOCYANATE	624-83-9	0.1		Y	N	SELENIUM COMPOUNDS		0.1	W	N	Υ	к	Cadmium Compounds					
METHYL METHACRYLATE	80-62-6	10		Y	N	STYRENE	100-42-5	1		Y	Ν	L	Chromium Compounds					
METHYL TERT-BUTYL ETHER	1634-04-4	10		Y	N	STYRENE OXIDE	96-09-3	1		Y	Ν	М	Cobalt Compounds					
METHYLCYCLCOPENTADIENYL MANGANESE	12108-13-3	0.1	R	N	Y	TETRACHLORODIBENZO-P-DIOXIN,[2,3,7,8]	1746-01-6	6E-07	D,V	Y	Υ	N	Coke Oven Emissions					
METHYLENE BIS(2-CHLOROANILINE), [4,4-]	101-14-4	0.2	V	Y	Y	TETRACHLOROETHANE, [1,1,2,2-]	79-34-5	0.3		Y	Ν	0	Cyanide Compounds					
METHYLENEDIANILINE, [4,4-]	101-77-9	1	V	Y	N	TETRACHLOROETHYLENE	127-18-4	10		N	Ν	Р	Glycol Ethers					
METHYLNAPHTHALENE, [2-]	91-57-6	0.01	V	Y	N	TITANIUM TETRACHLORIDE	7550-45-0	0.1		N	Ν	Q	Lead Compounds (except eleme	ntal Lead)				
MINERAL FIBERS		0	т	N	Y	TOLUENE	108-88-3	10		Y	Ν	R	Manganese Compounds					
NAPHTHALENE	91-20-3	10	V	Y	Ν	TOLUENE DIISOCYANATE, [2,4-]	584-84-9	0.1		Y	Ν	S	Mercury Compounds					
NAPHTHYLAMINE, [ALPHA-]	134-32-7	0.01	V	Y	N	TOLUIDINE, [ORTHO-]	95-53-4	4		Y	Ν	т	Fine Mineral Fibers					
NAPHTHYLAMINE, [BETA-]	91-59-8	0.01	V	Y	N	TOXAPHENE	8001-35-2	0.01		Y	Ν	U	Nickel Compounds					
NICKEL CARBONYL	13463-39-3	0.1	U	N	Y	TRICHLOROBENZENE, [1,2,4-]	120-82-1	10		Y	Ν	V	Polycyclic Organic Matter					
NICKEL COMPOUNDS		1	U	N	Y	TRICHLOROETHANE, [1,1,1-]	71-55-6	10		N	Ν	W	Selenium Compounds					
NICKEL REFINERY DUST		0.08	U	Ν	Y	TRICHLOROETHANE, [1,1,2-]	79-00-5	1		Y	Ν	Х	Polychlorinated Biphenyls (Aroclo	rs)				
NICKEL SUBSULFIDE	12035-72-2	0.04	U	N	Y	TRICHLOROETHYLENE	79-01-6	10		Y	Ν	Y	Radionuclides					
NITROBENZENE	98-95-3	1		Y	Ν	TRICHLOROPHENOL, [2,4,5-]	95-95-4	1		Y	Ν							
NITROBIPHENYL, [4-]	92-93-3	1	V	Y	Ν	TRICHLOROPHENOL, [2,4,6-]	88-06-2	6		Y	Ν		Notes					
NITROPHENOL, [4-]	100-02-7	5		Y	Ν	TRIETHYLAMINE	121-44-8	10		Y	Ν	Note 1	The SMAL for radionuclides is defined as	the effective	dose equ	ivalent	to sk of	
NITROPROPANE, [2-]	79-46-9	1		Y	Ν	TRIFLURALIN	1582-09-8	9		Y	Υ		in 1 million					

Mr. Wesley Graviett Facility Manager Armor Lite Trailer Manufacturing, LLC 1190 State Highway H Sikeston, MO 63801

RE: New Source Review Permit - Project Number: 2016-02-051

Dear Mr. Graviett:

Enclosed with this letter is your permit to construct. Please study it carefully and refer to Appendix A for a list of common abbreviations and acronyms used in the permit. Also, note the special conditions on the accompanying pages. The document entitled, "Review of Application for Authority to Construct," is part of the permit and should be kept with this permit in your files. Operation in accordance with these conditions, your new source review permit application and with your amended operating permit is necessary for continued compliance. The reverse side of your permit certificate has important information concerning standard permit conditions and your rights and obligations under the laws and regulations of the State of Missouri.

This permit may include requirements with which you may not be familiar. If you would like the department to meet with you to discuss how to understand and satisfy the requirements contained in this permit, an appointment referred to as a Compliance Assistance Visit (CAV) can be set up with you. To request a CAV, please contact your local regional office or fill out an online request. The regional office contact information can be found at the following website: http://dnr.mo.gov/regions/. The online CAV request can be found at http://dnr.mo.gov/cav/compliance.htm.

If you were adversely affected by this permit decision, you may be entitled to pursue an appeal before the administrative hearing commission pursuant to Sections 621.250 and 643.075.6 RSMo. To appeal, you must file a petition with the administrative hearing commission within thirty days after the date this decision was mailed or the date it was delivered, whichever date was earlier. If any such petition is sent by registered mail or certified mail, it will be deemed filed on the date it is mailed; if it is sent by any method other than registered mail or certified mail, it will be deemed filed on the date it is received by the administrative hearing commission, whose contact information is: Administrative Hearing Commission, United States Post Office Building, 131 West High Street, Third Floor, P.O. Box 1557, Jefferson City, Missouri 65102, phone: 573-751-2422, fax: 573-751-5018, website: www.oa.mo.gov/ahc.

Mr. Wesley Graviett Page Two

If you have any questions regarding this permit, please do not hesitate to contact Ryan Schott, at the Department of Natural Resources' Air Pollution Control Program, P.O. Box 176, Jefferson City, MO 65102 or at (573) 751-4817. Thank you for your attention to this matter.

Sincerely,

AIR POLLUTION CONTROL PROGRAM

Susan Heckenkamp New Source Review Unit Chief

SH:rsj

Enclosures

c: Southeast Regional Office PAMS File: 2016-02-051

Permit Number: